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Preface

The design of intelligent trading agents, mechanisms, and systems has received
growing atttention in the agents and multiagent systems communities in an
effort to address the increasing costs of search, transaction, and coordination
which follows from the increasing number of Internet-enabled distibuted elec-
tronic markets. Furthermore, new technologies and supporting business models
are resulting in a growing volume of open and horizontally integrated markets for
trading of an increasingly diverse set of goods and services. However, growth of
technologies for such markets requires innovative solutions to a diverse set of ex-
isting and novel technical problems which we are only beginning to understand.
Specifically, distributed markets present not only traditional economic prob-
lems but also introduce novel and challenging computational issues that are not
represented in the classic economic solution concepts. Novel to agent-mediated
electronic commerce are considerations involving the computation substrates of
the agents and the electronic institutions that supports trading, and also the
human–agent interface (involving issues of preference elicitation, representation,
reasoning, and trust). In sum, agent-mediated electronic trade requires princi-
pled design (from economics and game theory) and incorporates novel combina-
tions of theories from different disciplines such as computer science, operations
research, artificial intelligence, and distributed systems.

The collection of above-mentioned issues and challenges has crystallized into
a new, consolidated agent research field that has become a focus of attention in
recent years: agent-mediated electronic commerce.

The papers in this volume originate from the 6th Workshop on Agent-
Mediated Electronic Commerce (AMEC VI), held in conjunction with the 3rd
International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS) in July 2004. The AMEC VI workshop continued with the tradition
and built upon the success of the previous AMEC workshops.

Thus, the primary goal of this workshop was to continue to bring together
novel work from diverse fields such as computer science, operations research,
artificial intelligence and distributed systems that focus on modeling, imple-
mentation, and evaluation of computational trading institutions and/or agent
strategies over a diverse set of goods. Along this direction, areas of particular
interest included:

– Distributed (scalable) algorithmic mechanism design
– Mechanisms for unreliable, dynamic, and asynchronous environments
– Mechanisms for incomplete and/or imperfect information environments
– Mechanisms for information goods and services
– Mechanisms for security, privacy, accounting, verification, and auditing
– Distributed (agent and mechanism) learning models
– Agents strategies in multi-institutional environments
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– Economic and game theoretic specification, design, and analysis
– Bargaining, voting, and auction mechanisms
– Distributed reputation and trusted mechanisms
– User–agent interface design
– Agents that support bidding and negotiation
– Empirical evaluation of human–agent trading
– Eliciting human preferences and requirements
– Simulation and evaluation of properties of novel and complex mechanisms
– Goods, services, and contract description languages
– Mechanism description, verification, and testing languages
– Machine learning for mechanism identification problem
– Agent–mediated electronic system architectures and design principles
– Implemented agent-mediated electronic-commerce systems
– Mechanisms for business (supply chains, coalitions, and virtual enterprises)
– Mechanisms for Internet (congestion, routing, overlay, peer-to-peer, ad hoc

networks)
– Mechanisms for novel applications

The workshop received a total of 39 submissions, from which 14 were selected
for full presentation during the workshop. After the workshop, the authors were
asked to submit their revised versions for publication in this volume. The result
is that the volume contains 15 high-quality papers that can be regarded as
representative of the field.

We have arranged the papers in the book around three major topics:

– Mechanism design
– Trading agents
– Tools

The first section contains eight papers dealing with a variety of issues on
mechanism design. Dash et al. design an auction mechanism for allocating mul-
tiple goods when the buyers have interdependent valuations that turns out to be
a generalization of the Vickrey–Clarkes–Grove (VCG) mechanism. Conitzer et al.
study two related problems concerning the VCG payment scheme: the problem
of revenue guarantees and that of collusion. Motivated also by the problems of
the VCG payment scheme, Faltings introduces a new mechanism that sacrifices
Pareto-efficiency to achieve budget balance while being both incentive compat-
ible and individually rational. Also motivated by problems with side-payment
schemes, Jurca et al. present a mechanism that discovers (in equilibrium) the
true outcome of a transaction by analyzing the two reports coming from the
agents involved in the exchange. Larson et al. lay out mechanism design princi-
ples for deliberative agents: agents whose actions are modelled as part of their
strategies. Juda et al. devise an options-based market infrastructure that enables
bidders to use a dominant, truthful strategy across multiple, sequential auctions.
A different, more empirical approach is taken by Phelps et al., who report on an
evolutionary game-theoretic comparison of two double-auction market designs.
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Finally, Kelly focuses on the computational realization of mechanisms by analyz-
ing the use of generalized knapsack solvers for multi-unit combinatorial auctions.

The second section brings together a collection of papers on trading agents
in a wide range of trading scenarios. Debenham et al. propose an agent bidding
strategy that is not based on traditional game theory models but rather informa-
tion theoretic; maximum entropy inference to determine the agent’s actions tak-
ing into account the uncertain data he handles in actual-world scenarios. Gerding
et al. design and empirically compare different bargaining strategies for selling
agents when negotiating with many buyers. They show that bilaterally exchang-
ing multiple offers combined with a random offer generation mechanism suffices
to closely approximating Pareto-efficiency. Furthermore, they also analyse the
versatility of combined strategies. Sherstov et al. report on the development and
analysis of three autonomous stock-trading agents within the framework of the
Penn Exchange Simulator, a novel stock-trading simulator. Approaches based
on reinforcement learning, trend following, and market making are presented,
evaluated individually against a fixed opponent strategy, and analysed compar-
atively. Pardoe et al. research on strategies for a different type of scenario: the
trading agent competition supply chain management. They study the selling
strategy of a supply chain agent to generate the set of bids to customers in si-
multaneous reverse auctions that maximizes the agent’s expected profit. Sarne
et al. focus on the analysis of agents’ strategies for the dual parallel search in
partnership formation applications. As a framework application they choose the
classic voice communication partnerships application in an electronic market-
place. The authors manage to provide efficient means for the agents to calculate
their distributed equilibrium strategies so that they can improve their expected
utilities.

Finally, the third section contains two papers dealing with tools aimed at
supporting the enactment of digital markets. On the one hand, the work by
Michael et al. focuses on a scripting language and a run-time system that allow
for the specification and monitoring of market mechanisms using rights and
obligations. On the other hand, Reyes-Moro et al. introduce a bundling procedure
intended to assist buyers when deciding whether to auction a bundle of goods
as a whole or as separate, smaller bundles.

We would like to conclude by thanking the members of the Program Com-
mittee. They were able to produce a large number of high-quality reviews in a
very short time span. Furthermore, we would also like to thank the authors for
submitting their papers to our workshop, as well as the attendees and panelists
for their valuable insights and discussions. Needless to say that these helped
authors to improve the revised papers published in this book.

June 2005 Peyman Faratin
Juan A. Rodŕıguez-Aguilar
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Revenue Failures and Collusion in Combinatorial
Auctions and Exchanges with VCG Payments�

Vincent Conitzer and Tuomas Sandholm

Computer Science Department, Carnegie Mellon University,
5000 Forbes Avenue, Pittsburgh, PA 15213

{conitzer, sandholm}@cs.cmu.edu

Abstract. In a combinatorial auction, there are multiple items for sale, and bid-
ders are allowed to place a bid on a bundle of these items rather than just on the
individual items. A key problem in this and similar settings is that of strategic
bidding, where bidders misreport their true preferences in order to effect a better
outcome for themselves. The VCG payment scheme is the canonical method for
motivating the bidders to bid truthfully. We study two related problems concern-
ing the VCG payment scheme: the problem of revenue guarantees, and that of
collusion. The existence of such problems is known by many; in this paper, we
lay out their full extent.

We study four settings: combinatorial forward auctions with free disposal,
combinatorial reverse auctions with free disposal, combinatorial forward (or re-
verse) auctions without free disposal, and combinatorial exchanges. In each set-
ting, we give an example of how additional bidders (colluders) can make the out-
come much worse (less revenue or higher cost) under the VCG payment scheme
(but not under a first price scheme); derive necessary and sufficient conditions for
such an effective collusion to be possible under the VCG payment scheme; and
(when nontrivial) study the computational complexity of deciding whether these
conditions hold.

1 Introduction

In a combinatorial auction, there are multiple items for sale, and bidders are allowed
to place a bid on a bundle of these items rather than just on the individual items. A
rapidly growing body of computer science literature is devoted to the study of combi-
natorial auctions, and, to a lesser extent, variations of it, such as combinatorial reverse
auctions (where the auctioneer seeks to procure certain items) and combinatorial ex-
changes (where bidders can offer goods for sale as well as express demand for goods—
even within the same bid). One of the main reasons for the computer science commu-
nity’s interest in combinatorial auctions and exchanges is the hardness of the clearing
problem. The clearing problem is to label bids as accepted or rejected to maximize the
total value of the bids accepted (or, in the case of a reverse auction, to minimize their
total value), under the natural constraint that the corresponding allocation of items does

� This work is supported in part by NSF under CAREER Award IRI-9703122, Grant IIS-
9800994, ITR IIS-0081246, and ITR IIS-0121678.

P. Faratin and J.A. Rodrı́guez-Aguilar (Eds.): AMEC 2004, LNAI 3435, pp. 1–14, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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not require more items than are available (or, in the case of a reverse auction, under
the constraint that all the desired items are procured). For example, the combinatorial
auction clearing problem is NP-complete [15] (even to approximate [16]). Much re-
search has focused on developing worst-case exponential time algorithms as well as
approximation algorithms for the clearing problem [12,16,17,6].

Another key problem in auctions and exchanges (combinatorial or not) is that in
general, the bidders may not bid their true valuations for the goods. For example, un-
der a first-price payment rule, where bidders pay the value of their accepted bids, a
bidder that bids her true valuation is entirely indifferent whether her bid is accepted
or not. Thus, in order to benefit from the auction or exchange at all, bidders necessar-
ily need to “shave” their bids, that is, report a lower value than their true value. The
problem with untruthful bidding is that the clearing algorithm can only base the final
allocation of the goods on the reported valuations, and thus the final allocation may
not be optimal relative to the bidders’ true valuations. Thus, economic efficiency may
be lost. Additionally, by a result known as the revelation principle, for any nontruth-
ful mechanism, there is a truthful mechanism that performs just as well (under some
assumptions on the strategic behavior of the bidders) [11]. It turns out, however, that
by changing the payment rule, it is possible to motivate bidders to report their true
valuations. The best-known such payment rule is the Vickrey-Clarke-Groves (VCG)
scheme [18,3,8]. Here, a bidder must pay the total value of the bids that would have
been accepted if she had not participated, minus the total value of bids that did get ac-
cepted (excluding her own bids). Because the bidder pays the externality she imposes
on the other bidders (based on their reported valuations), she will bid to maximize the
value of the final allocation—measured by her true valuation and the others’ reported
valuations. If the clearing algorithm always finds the optimal allocation, bidding her
true value will always effect this.1 Not only is the VCG payment scheme the best-
known payment scheme for motivating truthfulness, if the setting is general enough,
given certain requirements, it (or its generalization to Groves mechanisms) is also the
only one [7,9,20].

Unfortunately, there are also many problems with VCG mechanisms. They intro-
duce the problem of lying auctioneers; they are bad from a privacy perspective; they are
vulnerable to collusion; and they may lead to low revenue for the auctioneer. (In this
paper, we will focus on the last two problems, which are closely related.) While most
researchers in combinatorial auctions and exchanges acknowledge these problems, we
believe that their severity may not be fully appreciated. For one, the Vickrey auction for
a single item (the second-price sealed-bid auction) has some nice properties that unfor-
tunately do not generalize to multi-item settings. For example, in a single-item Vickrey
auction, it is not possible for colluders to obtain the item at a price less than the bid
of any other bidder. Additionally, for the single-item Vickrey auction, various types of

1 Of course, in general, the clearing problem may be too hard to always be solved optimally;
and in general, the VCG scheme will not motivate bidders to bid truthfully when the final allo-
cation may be suboptimal. A growing body of research is dedicated to finding approximation
schemes for the (forward auction) clearing problem that still motivate bidders to bid truthfully,
or attempting to prove that this is impossible in general [13,10,2,9]. Throughout this paper we
will assume that the auctions and exchanges are cleared optimally.
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revenue equivalence with (for example) first-price sealed-bid auctions hold. As we will
show, in the multi-item setting these properties do not hold at all (and can be violated
to an arbitrary extent). We hope that a greater awareness of these issues will help bridge
the gap between theory and practice in mechanism design for combinatorial auctions
and exchanges.

To that end, in this paper we give some detailed worst-case results about collusion
and revenue. For the various variants of combinatorial auctions and exchanges, we study
the following single problem that relates both issues under consideration:

Given some of the bids, how “bad” can the remaining bidders make the outcome?

“Bad” here means that the bidders are paid an inordinately large amount, or pay
an inordinately small amount, relative to the goods they receive and/or provide. This is
closely related to the problem of making any revenue guarantees to the auctioneer. But
it is also the collusion problem, if we conceive of the remaining bidders as colluders.

As it will turn out, our fundamental problem is often computationally hard. Com-
putational hardness here is a double-edged sword. On the one hand, if the problem is
hard, collusion may not occur (or to a lesser extent) because the colluders cannot find
the (most) beneficial collusion. On the other hand, if the problem is hard, it is difficult
to make strong revenue guarantees to the auctioneer.

2 The VCG Mechanism

All the results in this paper hold even when all bidders are single-minded: that is, they
are interested in only one bundle of items (or, in the case of a reverse auction, can
provide only one bundle of items). In this case, every bid corresponds to a unique utility
function, namely the one for which this bid would have been a truthful revelation of the
bidder’s valuation for the bundle.

The VCG payment scheme proceeds as follows: accept bids so that the resulting
allocation maximizes the sum of the bidders’ utilities as implied by the bids, not tak-
ing payments into account. (This is simply maximizing the sum of the values of the
accepted bids in a forward auction, or minimizing their sum in a reverse auction.) Call
this sum of utilities a. Then, to determine winning bidder i’s payment, remove that
bidder’s bid, and see what the maximum sum of the utilities (disregarding payments)
would have been with only the remaining bids. Call this sum of utilities bi. Winning
bidder i then must pay the second sum of utilities, minus the original sum of utilities
of the other bidders—that is, the externality she imposed on the other bidders. (Thus, if
the value of winning bidder i’s bid is vi, the payment is bi − a + vi.) We observe that
this payment can be negative, if the bidder’s presence actually makes the other bidders
better off (disregarding the payments).2 For instance, in a reverse auction where goods
are disposable, each winning bidder’s payment will be nonpositive (the other bidders
need to supply fewer items when this bidder is present, so (disregarding payments) this
bidder makes the others better off).

2 This can only happen if the bidder’s presence actually makes more allocations to the other
bidders possible. For instance, in a forward auction with free disposal, when we remove a
bidder we can always throw away the items allocated to her and keep the allocation to all other
bidders the same. Thus, payments cannot be negative in this setting.
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3 Combinatorial (Forward) Auctions

3.1 Review

In a combinatorial auction, there is a set of items I = {A1, A2, . . . , Am} for sale. A
bid takes the form b = (B, v), where B ⊆ I and v ∈ �. The clearing problem is to
label bids as accepted or rejected, to maximize the sum of the values of the accepted
bids, under the constraint that no item occurs in more than one accepted bid. (This is
assuming free disposal, that is, items do not have to be allocated to anyone.) We say a
bid is truthful if the value attached to the bundle is the bidder’s utility for that bundle.

3.2 Motivating Example

Consider an auction with two items, A and B. Suppose we have collected two bids
(from different bidders), both ({A, B}, N). If these are the only two bids, one of the
bidders will be awarded both the items and, under the VCG payment scheme, have to
pay N . However, suppose two more bids (by different bidders) come in: ({A}, N + 1)
and ({B}, N + 1). Then these bids will win. Moreover, neither bidder will have to pay
anything!

This example demonstrates a number of issues. First, the addition of additional
bidders may actually decrease the auctioneer’s revenue from an arbitrary amount to
0. Second, the VCG mechanism is not revenue equivalent to the sealed-bid first-price
mechanism in combinatorial auctions, even when all bidders’ true valuations are com-
mon knowledge—unlike in the single-item case. (The first-price mechanism will gener-
ate positive expected revenue for these valuations; we omit the proof because of space
constraint.) Third, even when the other bidders by themselves would generate nonneg-
ative revenue for the auctioneer under the VCG payment scheme, it is possible that two
colluders can bid so as to receive all the items without paying anything.

The following proposition sums up the properties of this example.

Proposition 1. In a forward auction (even with only 2 items), there exists a family
of instances (sets of bids) such that: 1. The winning bidders pay nothing under the
VCG payment scheme; 2. If the winning bids are removed, the remaining bids actually
generate revenue N under the VCG payment scheme; 3. If these bids were truthful
(as we would expect under VCG), then if we had run a first-price sealed-bid auction
instead (and the bidders knew each other’s true valuations), any equilibrium would
have generated revenue Θ(N).

3.3 Characterization

We now proceed to characterize the settings where the colluders can receive all the
items for free.

Lemma 1. If the colluders receive all the items at cost 0, then for any positive bid on a
bundle of items by a noncolluder, at least two of the colluders receive an item from this
bundle.

Proof. Suppose that for some positive bid b on a bundle B by a noncolluder i, one of
the colluders c receives all the items in B (and possibly others). Then, in the auction
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where we remove that colluder’s bids, one possible allocation gives every remaining
bidder all the goods that bidder received in the original auction; additionally, it gives i
all the items in bundle B; and it disposes of all the other items c received in the original
auction. With this allocation, the total value of the accepted bids by bidders other than c
is at least v(b) more than in the original auction. Because the total value obtained in the
new auction is at least the value of this particular allocation, it follows that c imposes
a negative externality of at least v(b) on the other bidders, and will pay at least v(b).

Lemma 2. Suppose all the items in the auction can be divided among the colluders in
such a way that for any positive bid on a bundle of items by a noncolluder, at least two
of the colluders receive an item from this bundle. Then the colluders can receive all the
items at cost 0.

Proof. For the given partition of items among the noncolluders, let each colluder place
a bid with an extremely large value on the bundle consisting of the items assigned to
him in the partition. (For instance, twice the sum of the values of all noncolluders’
bids.) Then, the auction will clear awarding each colluder the items assigned to him by
the partition. Moreover, if we remove the bids of one of the colluders, all the remaining
colluders’ bids will still win—and thus none of the noncolluders’ bids will win, because
each such bid requires items assigned to at least two colluders by the partition (and at
least one of them is still in the auction and wins these items). Thus, each colluder
(individually) imposes no externality on the other bidders.

Combining these two lemmas, we get:

Theorem 1. The colluders can receive all the items for free if and only if it is possible
to divide the items among the colluders in such a way that for any (nonzero) bid by a
noncolluder, the items in that bid are spread across at least two colluders.

3.4 Complexity

Definition 1 (DIVIDE-SUBSETS). Suppose we are given a set S, as well as a collec-
tion of subsets of it, R = {S1, . . . , Sq}. We are asked whether S can be partitioned into
n parts T1, T2, . . . , Tn so that no subset Si ∈ R is contained in one of these parts.

Theorem 2. DIVIDE-SUBSETS is NP-complete, even when n = 2.

Complexity proofs are omitted because of space constraint.

4 Combinatorial Reverse Auctions

4.1 Review

In a combinatorial reverse auction, there is a set of items I = {A1, A2, . . . , Am} to
be procured. A bid takes the form b = (B, v), where B ⊆ I and v ∈ �. The clearing
problem is to label bids as accepted or rejected, to minimize the sum of the values of the
accepted bids, under the constraint that each item occurs in at least one accepted bid.
(This is assuming free disposal, that is, items do not have to be allocated to anyone.) We
say a bid is truthful if the value attached to the bundle is the bidder’s cost for providing
that bundle.
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4.2 Motivating Example

Consider a reverse auction with m items, A1, A2, . . . , Am. Suppose we have collected
two bids (from different bidders), both ({A1, A2, . . . , Am}, N). If these are the only
two bids, one of the bidders will be chosen to provide all the goods, and, under the
VCG payment scheme, be paid N . However, suppose m more bids (by different bid-
ders) come in: ({A1}, 0), ({A2}, 0), . . . , ({Am}, 0). Then these bids will win. More-
over, each bidder will be paid N under the VCG payment scheme. (Without this bidder,
we would have had to accept one of the original bids.) Thus, the total payment that
needs to be made is mN .

Again, this example demonstrates a number of issues. First, the addition of addi-
tional bidders may actually increase the total amount that the auctioneer needs to pay.
Second, the VCG mechanism requires much larger payments than a first-price auction
in the case where all bidders know each others’ valuations (and the equilibrium is in
pure strategies3). (The first-price mechanism will not require a total payment of more
than N for these valuations in any pure-strategy equilibrium; we omit the proof because
of space constraint.)

Third, even when the other bidders by themselves would allow the auctioneer to
procure the items at a low cost under the VCG payment scheme, it is possible for m
colluders to get paid m times as much for all the items.

The following proposition sums up the properties of this example.

Proposition 2. In a reverse auction, there exists a family of instances (sets of bids)
such that: 1. The winning bidders are paid mN under the VCG payment scheme; 2.
If the winning bids are removed, the remaining bids allow the auctioneer to procure
everything at a cost of only N ; 3. If these bids were truthful (as we would expect under
VCG), then if we had run a first-price sealed-bid reverse auction instead (and the bid-
ders knew each other’s true valuations), any equilibrium in pure strategies would have
required total payment of at most N . (However, there are also mixed-strategy equilibria
with arbitrarily large expected total payment.)

4.3 Characterization

Letting N be the sum of the values of the accepted bids when all the colluders’ bids
are taken out, it is clear that no colluder can be paid more than N . (With the colluder’s
bid, the sum of the values of others’ accepted bids is still at least 0; without it, it can
be at most N , because in the worst case the auctioneer can accept the bids that would
be accepted if none of the colluders are present.) In this subsection, we will identify a
necessary and sufficient condition for the colluders to be able to each receive N .

Lemma 3. If a colluder receives N , then the items that she has to provide cannot be
covered by a set of noncolluders’ bids with cost less than N .

3 Perhaps surprisingly, the first-price combinatorial reverse auction for this example (with com-
monly known true valuations corresponding to the given bids) actually has mixed-strategy
equilibria with arbitrarily high expected payments. We omit the proof because of space con-
straint.
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Proof. If they could be covered by such a set, we could simply accept this set of bids
(including those that were accepted already) rather than the colluder’s bid, and increase
the total cost by less than N . Thus, the colluder’s VCG payment is less than N .

Thus, in order for each of the n colluders to be able to receive N , it is necessary
that there exist n disjoint subsets of the items, each of which cannot be covered with a
set of noncolluders’ bids with total value less than N . The next lemma shows that this
condition is also sufficient.

Lemma 4. If there are n disjoint sets of items R1, . . . , Rn, each of which cannot be
covered by a set of noncolluders’ bids with cost less than N , then n colluders can be
paid N each.

Proof. Let colluder i (for i < n) bid (Ri, 0), and let colluder n bid (Rn ∪ (S −⋃
i Ri), 0). Then the total cost of all accepted bids with all the colluders is 0; but when

one colluder is omitted, the items she won cannot be covered at a cost less than N (be-
cause her bid contained one of the Ri). Thus, each colluder’s VCG payment is N .

The next lemma shows that the necessary and sufficient condition is equivalent to
being able to partition all the items into n sets, so that no element of the partition can
be covered by noncolluders’ bids with total value less than N . That is, we can restrict
our attention to the case where the sets exhaust all the items.

Lemma 5. The condition of Lemma 4 is satisfied if and only if it is possible to partition
the items into T1, . . . , Tn such that no Ti can be covered by a set of noncolluders’ bids
with cost less than N .

Proof. The “if” part is trivial: given Ti that satisfy the condition of this lemma, simply
let Ri = Ti. For the “only if” part, given Ri that satisfy the condition of Lemma 4, let
Ti = Ri for i < n, and Tn = Rn ∪ (S −

⋃
i Ri). We observe that this last set can also

not be covered at a cost of less than N because it contains Rn.

Combining all the lemmas, we get:

Theorem 3. The n colluders can receive a payment of N each (simultaneously), where
N is the sum of the values of the accepted bids when all the colluders’ bids are removed,
if and only if it is possible to partition the items into T1, . . . , Tn such that no Ti can be
covered by a set of noncolluders’ bids with cost less than N .

4.4 Complexity

Definition 2 (CRITICAL-PARTITION). We are given a set of items S, a collection
of bids (Si, vi) where Si ⊆ S and vi ∈ �, and a number n. Say that the cost of a subset
of these bids is the sum of their vi; and that the cost c(T ) of a subset T ⊆ S is the
lowest cost of any subset of the bids whose Si cover T .

We are asked whether there exists a partition of S into n disjoint subsets
T1, T2, . . . , Tn, such that for any 1 ≤ i ≤ n, c(Ti) = c(S).

Theorem 4. Even when the bids are so that a partition T1, . . . , Tn is a solution if and
only if no set S − Ti covers all items in a bid, CRITICAL-PARTITION is NP-complete
(even with n = 2).
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5 Combinatorial Forward or Reverse Auctions Without Free
Disposal

5.1 Review and Equivalence

A combinatorial forward auction without free disposal is exactly the same as one with
free disposal, with the exception that every item must be allocated to some bidder. Here,
bids with a negative value may still be useful, as they allow us to remove some of the
items—which may allow us to accept better bids for the remaining items.

Similarly, a combinatorial reverse auction without free disposal is exactly the same
as one with free disposal, with the exception that no additional items can be procured.
Here, bids with a negative value may occur—the (nondisposable) item may be a liability
to the bidder and the bidder could be happy to be rid of it.

In both cases, we seek to identify a subset of the bids that constitutes an exact
cover of the items—in the former case we try to maximize the sum of the values in the
cover, in the latter, to minimize it. Because bids may carry both negative and positive
values, we may simply switch the plus and minus signs in the reverse auction, and the
optimization problem will be the same. Moreover, after the switch, the value of a bid
in a reverse auction is exactly the utility the bidder would derive from having that bid
accepted (disregarding payments). It follows that we can simply run a reverse auction
as a forward auction by switching the signs. This makes intuitive sense: when items are
nondisposable, they can be either assets or liabilities.

In the rest of this section, we will discuss forward auctions without free disposal
only, because results immediately carry over to reverse auctions without free disposal.

5.2 Motivating Example

Consider a forward auction with two nondisposable items, A1 and A2 . Suppose we
have collected two bids (from different bidders): both ({A1, A2}, N). If these are the
only two bids, one of the bidders will be awarded both the items and, under the VCG
payment scheme, have to pay N . However, suppose two more bids (by different bidders)
come in: ({A1}, N + M) and ({A2}, N + M), with M > 0. Then these bids will win.
Moreover, because without free disposal, we cannot accept either of these bids without
the other, each of these bidders will be paid M under the VCG payment scheme!

Again, the example demonstrates a number of issues. First, additional bidders may
change the auctioneer’s revenue from an arbitrarily large positive amount to an arbitrar-
ily large negative amount (an arbitrarily large cost). Second, the VCG mechanism may
require arbitrarily large payments from the auctioneer, where a first-price auction would
actually generate revenue for the auctioneer, even in the case where all bidders know
each other’s valuations, for any equilibrium in pure strategies.4 (The first-price mech-
anism will generate a revenue of at least N for these valuations in any pure-strategy
equilibrium; we omit the proof because of space constraint.)

4 Similarly to the case of the combinatorial reverse auction with free disposal, there are mixed-
strategy equilibria in the first-price auction where the auctioneer is forced to make arbitrarily
large payments—we omit the proof because of space constraint.
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Third, even when the other bidders by themselves would generate positive revenue
for the auctioneer under the VCG payment scheme, it is possible that two colluders can
make the auctioneer pay each of them an arbitrarily large amount.

The following proposition sums up the properties of this example.

Proposition 3. In a forward auction without free disposal (even with only two items),
there exists a family of instances (sets of bids) such that: 1. Each winning bidder is paid
M under the VCG payment scheme (where M depends only on the winners’ bids); 2.
If the winning bids are removed, the remaining bids actually generate revenue N to
the auctioneer under the VCG payment scheme; 3. If these bids were truthful (as we
would expect under VCG), then if we had run a first-price sealed-bid auction instead
(and the bidders’ knew each other’s true valuations), any equilibrium in pure strategies
would have generated a revenue N . (However, there are mixed-strategy equilibria with
arbitrarily large cost to the auctioneer.)

5.3 Characterization

In this subsection, we will identify a necessary and sufficient condition for the colluders
to be able to each receive an arbitrary amount.

Lemma 6. If each colluder receives a payment of more than 2
∑
d

|v(bd)| (where d

ranges over the noncolluders), then for each colluder c, the set of all items awarded
to either her or a noncolluder (Ac ∪

⋃
d Ad, where Ab is the set of items awarded to

bidder b and d ranges over the noncolluders) cannot be covered exactly with bids from
the noncolluders.

Proof. Say that the sum of the values of accepted noncolluder bids is D (which may be
negative). Suppose that for one colluder c, the set of all items awarded to either her or
a noncolluder (Ac ∪

⋃
d Ad) can be covered by a set of noncolluder bids of combined

value C (which may be negative). Then removing colluder c can make the allocation at
most |C|+ |D| worse to the other bidders (relative to their reported valuations), because
we could simply accept the bids of combined value C and no longer accept the bids of
combined value D, and keep the rest of the allocation the same. Thus, under VCG, that
colluder should be rewarded at most |C| + |D| ≤ 2

∑
d

|v(bd)|.

Thus, in order for each colluder to be able to receive an arbitrarily large payoff, it
is necessary that there are n disjoint subsets of the items such that, when taken together
with the remaining items, no such subset can be covered exactly by the noncolluders’
bids (while the set of remaining items can, by itself, be covered exactly by the noncol-
luders’ bids). The next lemma shows that this condition is also sufficient.

Lemma 7. If it is possible to partition the items into T1, . . . , Tn, Tn+1 such that for no
1 ≤ i ≤ n, Ti ∪ Tn+1 can be covered exactly with bids from the noncolluders; and
Tn+1 can be covered exactly with bids from the noncolluders; then for any M > 0, n
colluders can place additional bids such that each of them receives at least M .

Proof. Let colluder i place a bid (Ti, M + 3
∑
d

|v(bd)|) (where d ranges over the non-

colluders). All these bids will be accepted, because it is possible to do so by also ac-
cepting the noncolluder bids that cover Tn+1 exactly; and these noncolluder bids will
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have a combined value of at least −
∑
d

|v(bd)|, so that the sum of the values of all

accepted bids is at least (3n − 1)
∑
d

|v(bd)|) + nM . (We observe that if we do not

accept all of the colluder bids, the sum of the values of all accepted bids is at most
(3(n−1)+1)

∑
d

|v(bd)|)+(n−1)M = (3n−2)
∑
d

|v(bd)|)+(n−1)M .) Now, if the

bid of colluder i is removed, it is no longer possible to accept all the remaining n − 1
colluder bids, because Ti ∪ Tn+1 cannot be covered exactly with noncolluder bids. It
follows that the total value of all accepted bids when i’s bid is removed can be at most
(3(n−2)+1)

∑
d

|v(bd)|)+(n−2)M . When i’s bid is not omitted, the sum of the values

of all accepted bids other than i’s is at least (3(n − 1) − 1)
∑
d

|v(bd)|) + (n − 1)M .

Subtracting the former quantity from this, we get that the VCG payment to i is at least∑
d

|v(bd)|) + M .

The next lemma shows that the necessary and sufficient condition is equivalent to
being able to partition all the items into n sets, so that no element of the partition can be
covered exactly by the noncolluders’ bids. That is, we can restrict our attention to the
case where Tn+1 = {}.

Lemma 8. Lemma 7’s condition is satisfied if and only if the items can be partitioned
into R1, . . . , Rn such that no Ri can be covered exactly with bids from the noncolluders.

Proof. For the “if” part: given Ri that satisfy the condition of this lemma, let Ti = Ri

for i ≤ n, and Tn+1 = {}. Then no Ti ∪ Tn+1 = Ri can be covered exactly with bids
from the noncolluders, and Tn+1 = {} can trivially be covered exactly with noncolluder
bids. For the “only if” part: given Ti that satisfy the condition of Lemma 7, Ri = Ti for
i < n, and let Rn = Tn∪Tn+1. That Rn cannot be covered exactly by noncolluder bids
now follows directly from the conditions of Lemma 7. But also, no Ri with i < n can
be covered exactly: because if it could, then we could cover Ti ∪Tn+1 = Ri ∪Tn+1 us-
ing the bids that cover Ri exactly together with the bids that cover Tn+1 exactly (which
exist by the conditions of Lemma 7).

Combining all the lemmas, we get:

Theorem 5. The n colluders can receive a payment of at least M each (simultane-
ously), where M is an arbitrarily large number, if and only if it is possible to partition
the items into R1, . . . , Rn such that no Ri can be covered exactly with bids from the
noncolluders.

5.4 Complexity

Definition 3 (COVERLESS-PARTITION). We are given a set S and a collection of
subsets S1, S2, . . . , Sq ⊆ S. We are asked whether there is a partition of S into subsets
T1, T2, . . . Tn ⊆ S such that no Ti can be covered exactly by the Si. (That is, each cover
of one Ti will either use two intersecting Si, or include some elements outside Ti.)

Theorem 6. Even if there is a singleton Si for all but two elements a and b, and S0 =
{a, b}, and n = 2, COVERLESS-PARTITION is NP-complete.
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5.5 An Easier Collusion Problem

So far, we phrased the collusion problem so that each colluder should receive M , where
M is an arbitrary amount. An easier problem for the colluders is to make sure that
together, they receive M , where M is an arbitrary amount. Such a collusion is less
stable (because some of the colluders may be receiving very little). Nevertheless, as we
will show, such collusions are possible whenever a weak (and easily verified, given the
others’ bids) condition holds: at least one item has no singleton bid on it. (A singleton
bid is a bid on only one item.) We first show that this condition is necessary.

Lemma 9. If at least one colluder receives a payment of more than
∑
d

|v(bd)| (where

d ranges over the noncolluders), there is at least one item s on which no noncolluder
places a singleton bid.

Proof. If each item has a singleton noncolluder bid placed on it, then when we remove
a colluder’s bid, we can simply cover all the items in it with singleton bids (with a com-
bined value of at least −

∑
d

|v(bd)|), and leave the rest of the allocation unchanged. It

follows that the VCG payment to the colluder can be at most
∑
d

|v(bd)|).

We now show that the condition is sufficient.

Lemma 10. If there is at least one item s on which no noncolluder places a singleton
bid, then if one colluder bids ({s}, 0), and the other colluder bids (S − {s}, M +
2
∑
d

|v(bd)|) (for M > 0), the total payment to the colluders is at least M .

Proof. The colluders’ bids will be the only accepted ones (because colluder 2’s bid has
a greater value than all other bids combined). If we removed colluder 2’s bid, the to-
tal value of the accepted bids would be at most

∑
d

|v(bd)|), so colluder 2 will pay at

most this much under the VCG scheme. If we removed colluder 1’s bid, colluder 2’s
bid could no longer be accepted (because {s} cannot be covered by itself), and thus
the total value of the accepted bids could be at most

∑
d

|v(bd)|). It follows that colluder

1 is paid at least M+
∑
d

|v(bd)|). So the total payment to the colluders is at least M .

Combining the two lemmas, we get the desired result:

Theorem 7. Two (or more) colluders can receive a total payment of M , where M is an
arbitrarily large number, if and only if there is at least one item that has no singleton
bid placed on it by a noncolluder.

6 Combinatorial Exchanges

6.1 Review

In a combinatorial exchange, there is a set of items I = {A1, A2, . . . , Am} that can be
traded. A bid takes the form b = (λ1, . . . , λm, v), where λ1, . . . , λm, v ∈ � (possibly
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negative). The clearing problem is to label bids as accepted or rejected, so that the sum
of the accepted vectors has its first m entries ≤ 0, to maximize the last entry of the sum
of the accepted vectors. (This is assuming free disposal, that is, items do not have to
be allocated to anyone.) We say a bid is truthful if the value attached to the λs is the
bidder’s utility for receiving λi units of good i, for every i. We will also use the notation
({(Ai1 , λi1 ), (Ai2 , λi2 ), . . . , (Aik

, λik
)}, v) for representing a bid in which λij units of

item Aij are demanded (and 0 units of each item that is not mentioned).

6.2 Impossibility of a Revenue Guarantee (or a Bound on Collusion)

In a combinatorial exchange with at least two items A1 and A2, let q1 (respectively, q2)
be the total number of units of A1 (respectively, A2) offered for sale in bids so far (or,
in bids by noncolluders). Now consider the following two bids (possibly by colluders):
({(A1, q1+1), (A2, −q2−1)}, M+

∑
d

|v(bd)|) and ({(A1, −q1−1), (A2, q2+1)}, M+∑
d

|v(bd)|), where M > 0 and d ranges over the original (noncolluding) bids. Both

these bids will be accepted (for otherwise, the total value of the accepted bids could be
at most M + 2

∑
d

|v(bd)| < 2(M +
∑
d

|v(bd)|)). Moreover, if we remove one of these

two bids, the other cannot be accepted (because its demand cannot be met), so the total
value of the accepted bids can be at most

∑
d

|v(bd)|). It follows that the VCG payment

to each of these two bidders is at least M . This proves the following theorem:

Theorem 8. In a combinatorial exchange with at least two items (even with free dis-
posal), for any set of bids by noncolluders, two colluders can place bids so that each
of them will receive at least M , where M is an arbitrary amount. Moreover, each one
receives exactly the items the other provides, so that their net contribution in terms of
items is nothing.

7 Conclusion

The VCG mechanism is the canonical payment scheme for motivating the bidders to
bid truthfully in combinatorial auctions and exchanges; if the setting is general enough,
under some requirements, it is the only one. Unfortunately, it also introduces many
problems. In this paper, we focused on the related problems of revenue guarantees and
bidder collusion. While many researchers in the area are aware of the existence of these
problems under the VCG mechanism, their full extent was (to our knowledge) unknown.
Besides studying how severe these problems can be, we also studied the computational
problem of deciding how “bad” additional bids could make the final outcome. This
problem is of interest both to the auctioneer, for the purpose of coming up with a rev-
enue guarantee based on a subset of the bids that she knows; as well as to colluding
bidders, for the purpose of deciding how to bid most effectively given the noncolluders’
bids. Hardness of this problem is undesirable because of the first purpose, but desirable
because of the second purpose.

For combinatorial forward auctions with free disposal under VCG, we showed
that as few as two colluders may receive all the items at zero cost, even in cases
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where the noncolluders’ bids by themselves would have generated positive revenue
for the auctioneer; whereas running a first-price auction instead would have generated
at least a constant fraction of that revenue. We gave a necessary and sufficient con-
dition for the colluders to be able to receive all the items at zero cost. We showed
that deciding whether this condition is satisfied is NP-complete even with only two
colluders.

For combinatorial reverse auctions with free disposal under VCG, we showed that
n colluders may be able to receive a total payment of nN (N each), where N is the
total payment the auctioneer would have to make if the colluders were not present;
whereas running a first-price auction instead would have required a cost of only N
in any pure-strategies equilibrium. (Though arbitrarily bad mixed-strategy equilibria
exist.) We gave a necessary and sufficient condition for n colluders to be able to re-
ceive a payment N each. We showed that deciding whether this condition is satisfied is
NP-complete.

For combinatorial forward auctions without free disposal (which we showed are
equivalent to combinatorial reverse auctions without free disposal), we showed that the
colluders may be able to each receive (simultaneously) an arbitrarily high payment;
whereas running a first-price auction instead would have given the same revenue to
the auctioneer as the VCG auction without the colluders. We showed a necessary and
sufficient condition for n colluders to be able to each (simultaneously) receive an ar-
bitrarily large payment. We showed that deciding whether this condition is satisfied is
NP-complete even with only two colluders. We also showed that colluders can make
the sum of payments to them (as opposed to all individual payments simultaneously)
arbitrarily large if and only if at least one item does not have a singleton bid on it (only
two colluders are necessary).

Finally, for combinatorial exchanges (with or without free disposal), we showed
that two colluders can always each get an arbitrarily large payment (simultaneously),
with each colluder receiving exactly what the other provides (so their net contribution
is zero).

8 Future Research

We believe future research should address the revenue and collusion problems that VCG
introduces in combinatorial auctions and exchanges. A few avenues are available here.
First, it may be possible to design other truthful mechanisms (possibly Groves mech-
anisms) which do not have these issues. They could be designed by hand for general
settings; alternatively, using automated mechanism design [4,5], they could be designed
by a computer for the specific setting at hand. (For example, no-collusion constraints
could be given to the automated mechanism design software in the same manner that
incentive-compatibility constraints are given to it now.) Alternatively, we may switch
our attention to mechanisms that are not truthful direct revelation mechanisms. As we
demonstrated, simple first-price mechanisms (which are decidedly nontruthful) already
avoid some of the pitfalls of VCG pointed out in this paper. All of these issues should
also be studied in the context of iterative combinatorial auctions [14,19,1].
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Abstract. This paper reports on the design of an auction mechanism for allo-
cating multiple goods when the buyers have interdependent valuations. We cast
the problem as a multi-agent system consisting of selfish, rational agents and
develop an auction mechanism which is efficient, incentive compatible and indi-
vidually rational. We first discuss the necessary assumptions that any mechanism
developed for this scenario should satisfy so as to achieve the aforementioned
properties. We then present our mechanism and show how it is a generalisation
of the Vickrey-Clarke-Groves mechanism.

1 Introduction

Auction mechanisms have been proposed as a solution for a variety of task and resource
allocation problems that occur in multi-agent systems (MAS) [2,11,13]. A common re-
quirement of these systems is that agents of limited complexity can participate fairly
without the risk of being exploited by more complex agents indulging in strategic be-
haviour. As such, direct mechanisms which are incentive compatible are most often
considered, as under these mechanisms, the equilibrium strategy of all agents is simply
to truthfully report their type to the auctioneer1. Of these mechanisms, the Vickrey-
Clarke-Groves (VCG) mechanism is the most widely studied because in addition to the
above properties, it ensures that the resulting allocation is efficient (i.e. it maximises the
global welfare) and that the mechanism is individually-rational (i.e. it guarantees any
agent joining the mechanism derives a non-negative utility) [5].

However, a key shortcoming of the VCG mechanism is that it relies on private inde-
pendent valuations to achieve these desirable properties. Such private valuations arise
when an agent forms its valuation of the goods or services based solely on its own ob-
servation or signal (e.g. the value of a particular car to an agent depends solely on the
agent’s own perception of the car’s use and is not dependent on the valuations of other
bidders). However, the more general case is that valuations are actually interdependent
(e.g. if the agents’ valuations were to consider not only the car’s use, but also the po-
tential re-sale value of the car in the future, the valuation would clearly be dependent

1 The revelation principle, which states that any mechanism can be transformed into an incen-
tive compatible and direct revelation mechanism (ICDRM), thereby guarantees that if a more
complex mechanism achieves some desirable properties then there is a corresponding ICDRM
that can also achieve them.

P. Faratin and J.A. Rodrı́guez-Aguilar (Eds.): AMEC 2004, LNAI 3435, pp. 15–29, 2005.
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on the valuations of other bidders). Now, in auctions with interdependent valuations,
the desirable properties of the VCG mechanism no longer hold and the auction is not
guaranteed to be efficient.

Interdependent valuations occur most commonly within multi-agent systems when
agents have noisy or uncertain estimates of the true value of a good. For example, con-
sider the case of agents bidding for a service in some form of computational economy
(as is found, with web services or grid computing). In such cases, the value of a service
to an agent is often dependent on the time of response between submitting a request
and receiving the desired service. However, in many such cases, the dynamic and open
nature of most of these systems means that each agent is only likely to have limited
previous experience of a given service and thus it will only have an imprecise estimate
of its expected response time. Now if the agent knew the response time of other agents
who have used this service (e.g. by asking them about their previous experience or by
deducing it from their bidding behaviour), it would be able to form a more accurate
estimate of the future response time (by cross-correlating from a broader set of expe-
riences). Hence each agent’s valuation is dependent on the signals (in this case, the
response time) observed by the other agents bidding for the service and thus we again
have interdependent valuations.

Another instance where interdependent valuations have been documented is in the
FCC spectrum auctions [3] where it was found that bidders formed their valuations
based around the beliefs and actions of other bidders. In these auctions, each bidder
wanted to infer from the bidding actions of the other bidders how much they valued
the spectrum licenses that were being offered. Thus, whilst each bidder had carried out
independent research to gauge the market profitability of these spectrum licenses (i.e.
how much money can an agent potentially make by using the license if it wins it), they
wanted to use the information gained by the other bidders as well.

To overcome the independent valuation limitation, a number of researchers have
developed efficient auctions for interdependent valuation scenarios where a single item
is allocated (see section 2 for more details). However, in this work we are interested
in the case of multiple items being allocated (i.e where agents may be interested in
combinations of items such as a bundle of services). This extension also allows us
to consider the important case of combinatorial allocations. These allocations deal
with items exhibiting complementarities and substitutabilities and are shown to be
more efficient than multiple concurrent auctions of single goods [11,13]. Such allo-
cations occur in many real world scenarios such as the grid services and FCC spectrum
auction.

To this end, we develop a novel direct mechanism that can allocate multiple items
in an interdependent valuation scenario where each agent receives a single-dimensional
signal (for example, a time of response in the computational economy or market
profitability in the case of the FCC spectrum). We restrict our attention to single-
dimensional signals because in an interdependent valuation scenario it is not possi-
ble to develop an efficient auction for multi-dimensional signals [6]2. Moreover, the
single-dimensionality of the signal is not overly restrictive because in many cases the

2 However, Mezzetti [8] shows that if we adopt a two-stage approach to the auction design, we
can then achieve efficiency and incentive-compatibility.
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necessary information can be encompassed into a representative single-dimensional sig-
nal. In developing this mechanism, we advance the state of the art in the following ways:

1. We extend the standard VCG mechanism to deal with interdependent valuations in
the case of multiple goods in which agents receive a single-dimensional signal.

2. We show that our mechanism is general and demonstrate that it reduces to the VCG
mechanism for multiple goods in the case of private values.

3. We prove the economic properties of our mechanism. In particular, we show that
it is incentive-compatible, individually rational and efficient. We also analyse its
computational properties and show that the mechanism does not impose any addi-
tional computational load on the agents, but does so in the case of the centre (as
compared to an independent valuation scenario).

The remainder of the paper is organized as follows: section 2 presents related work.
Section 3 then develops our auction mechanism for the interdependent valuation sce-
nario. We then provide an explanatory example that highlights how the mechanism
works in section 4. In section 5 we prove the economic and computational properties of
the mechanism. Finally, we conclude and suggest areas of future work in section 6.

2 Related Work

The VCG mechanism and its various extensions have been used in a variety of resource
and task allocation scenarios that occur in MAS [11,13,7,5]. However, in these scenar-
ios, work has invariably concentrated on private valuation situations. Specifically, in the
case where an agent observes a single-dimensional signal about the objects it wishes to
bid on and this signal determines its valuation. This single-dimensional signal is often
referred to as the type of the agent.

Recently, however, a number of researchers have started to consider interdependent
auctions [7,4,6]. In particular, there are currently two main approaches to finding an
efficient mechanism for the allocation of items with interdependent valuations. Krishna
considers a direct mechanism for efficient allocations for multi-unit single items with
single-dimensional signals [7]. In this case, agents submit their interdependent valu-
ation functions, as well as their signals, to a central auctioneer who then decides on
the efficient allocation. The payment scheme was then devised so that the agents are
incentivised to reveal their signals truthfully.

On the other hand, Dasgupta and Maskin developed an indirect efficient mechanism
for the case of two non-identical items, again with single-dimensional signals [4]. In
their case, agents make contingent bids rather than submitting their valuation functions
and observed signals (i.e. agent 1 submits a range of bids which describes its bid when
agent 2 bids a particular value and vice versa). Thus the bidding is more complex than
in Krishna’s mechanism because the agents have to submit bids based on what other
agents might bid, rather than just revealing their valuation function and signals. This
bidding becomes even more complex in the indirect mechanism they have developed
for the case where multiple items need to be allocated.

Given this, in this paper, we adopt the approach by Krishna, since the bidding is
more straightforward for the agents. Specifically we develop a direct mechanism in
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order to deal with the allocation of multiple items where each agent receives a single-
dimensional signal. A naive extension of the VCG mechanism is known not to work
in this case [7] and given this we show how to change the payment scheme in order to
achieve the desirable economic properties of the VCG. We should note here that we do
not concern ourselves with the problem of multi-dimensionality of these signals since
it is known that allowing for multi-dimensionality of signals leads to inefficient alloca-
tions [6] in direct mechanisms. If the agents can observe the outcome of their reports,
then an efficient allocation with multi-dimensional types is possible [8]. However, we
believe that this is impractical in many cases because an agent might not be able to
observe the outcome from a report (see [8] for an example). Thus, in this paper we
consider direct mechanism where the agents can report on their types only once.

3 The Multiple Good Interdependent Mechanism

In this section, we extend Krishna’s approach to develop a mechanism that is incentive-
compatible, efficient and individually-rational for the case of multiple goods with
single-dimensional signals. In this scenario, there is a set of agents I. Each agent i,
i ∈ I, observes a signal xi ∈ �+ and forms its valuation vi(.) based on the vector of
signals x = [x1, . . . , xI ] (where each element in the vector is observed by one agent
and is correspondingly indexed) and the particular allocation f ∈ F being implemented
(F denotes the set of all possible allocations). Thus, vi : �|I|

+ × F → �+. For ease
of presentation, we shall denote the set I \ i as −i. Furthermore, we shall at times
denote vi(f,x) as vi(.). Our mechanism, (M, r), then consists of an allocation rule

M : �|I|
+ → F which chooses the allocations and a payment rule r : �|I|

+ → �|I|
+

which determines the payments ri to each agent, both being based on the reports of
the signal values x. Finally, we shall denote allocations induced by the true report of
xi (x−i being truthful) as f∗

0 . As xi is decreased, it is quite natural to expect that the
allocation which is deemed efficient will change because the valuations of each allo-
cation by the agents would also change. These allocations will be denoted by f∗

l with
l being the index of each successive induced allocation as xi is decreased. Mirroring
this, as xi is increased, the successive efficient allocations are denoted by f∗

−l. Now,
before presenting our mechanism, we shall discuss the assumptions that are critical for
the auctions to be efficient.

Assumption 1. ∂vi

∂xj
> 0 ∀i, j ∈ I

This implies that higher values of the signal lead to higher valuations for the agent.
This restricts the signal of the agent to vary in one direction only, thereby making it
impossible for an agent to have the same valuation of an allocation for two different
signal values. For example, in the case of a computational economy, this would
imply that the valuation always increases with rapidity of service (which is xi).

Assumption 2. ∂vi

∂xi
>

∂vj

∂xi
∀i, j ∈ I, i 	= j

This implies that an agent’s signal affects its own valuation more than it affects
the valuation of any other agent. This assumption is the single-crossing condition
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analogue in the interdependent scenario [7,9]. Without this condition, no efficient
mechanism can exist. In the case of a computational economy, this implies that the
agent puts more credence on the rapidity of service it measured as opposed to the
one observed by other agents.

Assumption 3. ∂vi

∂xi
(., f∗

p ) ≥ ∂vi

∂xi
(., f∗

q ) if p < q

This implies that if a higher value of xi induces an allocation f∗
p , then agent i’s value

changes more rapidly in this new allocation than in the previous allocation f∗
q . This

implies that on receiving a higher xi, the centre allocates a set of goods to i in the
new allocation f∗

p where i’s valuation changes more rapidly, than in the previous
set f∗

p+1. To better explain this assumption, consider a situation where there are two
services to be allocated and an agent has a complementary valuation of those ser-
vices. Suppose that the agent is allocated a particular service when xi = α. Now,
if xi is increased, there will come a point xi = β > α when it will be efficient
to allocate both services to the agent (since from assumption 2, its valuations will
increase more rapidly than that of other agents). This assumption then implies that
the rate of change of the valuation with respect to xi is greater in this new allocation
than in the previous one. Consider, for example, two agents bidding for two services
being in a grid service economy. Then suppose that as xi is increased, it first be-
comes more efficient to allocate one good (denote this allocation as f∗

−1) and then
both goods to agent i (denote this allocation as f∗−2). Then this assumption implies
that ∂vi

∂xi
(xi, x−i, f

∗
−2) ≥ ∂vi

∂xi
(xi, x−i, f

∗
−1) i.e. agent i’s valuation increases more

rapidly with xi when it is allocated both goods rather than only one.

Given these assumptions, our mechanism then proceeds as follows:

1. Each agent i transmits to the centre its valuation function vi(f, x) for all the possible
allocations f ∈ F . This function is also over all possible values of x.

2. Each agent i also transmits its observed signal x̂i.3

3. The centre then computes the optimal allocation f∗
0 which is calculated as:

f∗
0 = argmax

f∈F
(∑

i∈I
vi(f, x̂)

)
(1)

4. The centre also calculates the payment ri made by each agent i. To do this, the
centre first finds the m next best allocations as the reported signal x̂i is decreased
successively, until the presence of i makes no difference to the allocations. That is,
find allocations f∗

1 . . . f∗
m and the signal values zl

i such that:

zl
i = inf

{
yi :

∑
j∈I

vj(f∗
l , yi,x−i) =

∑
j∈I

vj(f∗
l+1, yi,x−i)

}
(2)

(where each allocation f∗
l is different) until:

zm
i = inf

{
yi :

∑
j∈I

vj(f∗
m−1, yi,x−i) =

∑
j∈I

vj(f∗
m, yi,x−i)

}
(3)

3 Of course, x̂i may not be equal to xi. However, we prove in section 5 that it is a best strategy
for the agent to set x̂i = xi.
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where the allocation f∗
m is the optimal allocation when i does not exist i.e.

f∗
m = argmax

f∈F

∑
j∈−i

vj(f,x)

Then the transfer4 to buyer i is:

ri =
m−1∑
l=0

[∑
j∈−i

vj(f∗
l , zl

i,x−i) −
∑
j∈−i

vj(f∗
l+1, z

l
i,x−i)

]
(4)

The above scheme rests upon making an agent derive a utility equal to the marginal
contribution that its presence makes to the whole system of agents (which is the same
intuition as used in the VCG). Thus the additional part of this mechanism is to take into
account the effect that an agent’s signal xi has on the overall utility of the system.

This mechanism is general and is shown (below) to reduce to the well-known
multiple-good private value model if we take the case of independent valuations i.e
when vi(x, .) = vi(xi). Then the optimal allocation (from equation 1) is:

f∗
o = argmax

f∈F
(∑

i∈I
vi(f, x̂i)

)
To calculate the payment scheme, we first note that with independent valuations xi only
affects vi(.). Thus repeatedly decreasing xi, until the stopping condition on equation 3,
does not change the valuation of the other agents −i on the different allocations. This
then implies that in the payment (as computed by equation 4) all the terms cancel each
other, except for the first and last, leading to a payment of:

ri =
∑

j∈I\i

vj(f∗
0 , x̂j) −

∑
j∈I\i

vj(f∗
m, x̂j) (5)

This is exactly the payment scheme for the multiple-good private values model. Thus,
this shows that the classical VCG mechanism is an instance of the generalised mecha-
nism developed here. Furthermore, notice that assumption 2 is automatically satisfied
in this independent valuation scenario, since ∂vj

∂xi
= 0 in such a scenario. Also, since an

increase in xi would only increase vi(., xi), any increase in xi that induces a new allo-
cation would imply that the rate of change of vi(., xi) with respect to xi is higher in the
new allocation than in the previous allocation. Thus, assumption 3 is also automatically
satisfied in the independent valuation scenario.

4 Example of an Interdependent Valuation Scenario

In order to better explain how the mechanism operates to achieve efficiency and
incentive-compatibility, in this section, we present an example that demonstrates how it
computes the efficient allocation and the payments. We will also consider the assump-
tions which we made in section 3 and show how the mechanism fails when these do not
hold.

4 If the transfer is negative it implies that buyer i pays to the centre.
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We consider a very simple case, namely that with two agents 1 and 2 bidding for
two different spectrum licenses A and B. The set of possible allocations consists of
four members, which are F = {(AB, ∅), (A, B), (B, A), (∅, AB)}. In this case, each
agent perceives a particular signal xi that determines the market profitability of the
spectrum licenses. Table 1 shows the valuations of player 1 and 2 for each allocation as
well as the sum of their valuations.

Table 1. Valuations of the players with each allocation

Allocation v1(f,x) v2(f,x) vI(f,x)
(AB,∅) 4x1 + 2x2 0 4x1 + 2x2

(A, B) 2x1 + x2 x1 + 2x2 3x1 + 3x2

(B, A) x1 + x2 0.5x1 + 2x2 1.5x1 + 3x2

(∅, AB) 0 x1 + 4x2 x1 + 4x2

We shall now consider how agent 1 views the mechanism as it reports its signal x1.
The explanation for agent 2 is the same and is therefore omitted. Figure 1 shows how
the value of each allocation varies for agents 1, 2 and the set of agents I, as agent 1’s
reported signal x1 is increased. We denote agent 1 by i and agent 2 by −i to demonstrate
how this works in cases of more than two agents. Suppose that agent 1 has observed
x1 = 1.5 and agent 2 has observed a value of x2 = 2. Then from the figure, we
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Fig. 1. Valuations of 1, 2 and I for each bundle as x1 is increased
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see that the efficient allocation in this case is f∗
0 = (A, B) (the efficient allocation

is the one that maximises the value of I). Furthermore, the values of xi at which it
becomes more efficient to implement allocations f∗

1 = (∅, AB) and f∗−1 = (AB, ∅)
are z0

i = 1 and z−1
i = 2 respectively (shown in figure 1). Hence we can calculate the

overall utility that agent 1 derives from reporting truthfully, which from equation 4, is
vi(f∗

0 ,x) + v−i(f∗
0 , z0

i x−i) − v−i(f∗
1 , z0

i x−i) = 5 + 5 − 9 = 1. Now, any report in
the range 1 ≤ xi ≤ 2 will induce the same allocation and transfer and thus agent 1
has no incentive to report xi in this range different from the truthful value. If agent
1 reports xi > 2, it will then derive a utility of vi(f∗−1,x) + v−i(f∗−1, z

−1
i x−i) −

v−i(f∗
0 , z−1

i x−i)+ v−i(f∗
0 , z0

i x−i)− v−i(f∗
1 , z0

i x−i) = 10+0−6+5−9 = 0, which
is less than what it would derive from truthful reporting. Thus agent 1 would not over-
report its observed value. The reason why this occurs is because, as shown in figure 1,
vi(f∗

−1,x) − vi(f∗
0 ,x) is always less than v−i(f∗

0 , z−1
i x−i) − v−i(f∗

1 , z−1
i x−i) when

the true value of xi is in the range 1 ≤ xi ≤ 2. If, on the other hand, the agent reports
xi < 1, it would then derive a utility of vi(f∗

1 ,x) = 0 which is again less than what it
would derive from truthful reporting. We have thus demonstrated how an agent finds it
in its best interest to report truthfully (see section 5 for a more general proof).

The mechanism is guaranteed to work in the above example because the valuations
satisfy the assumptions presented in section 3. We will now show how this mechanism
would fail if ever, one of these assumptions does not hold.

In order to show what happens when assumption 1 fails, consider only the single
good A. Suppose that agent 1 has a valuation of (x1 − 2)2 + x2 for good A and agent 2
still has the same valuation of 0.5x1+2x2. Then the auctioneer in this case has to decide
only between two allocations, namely F = {(A, ∅), (∅, A)}. With these valuations, it
is efficient to allocate good A to agent 2 when 2.25 − √[

(2.25)2 − (4 − x2)
]

≤ x1 ≤
2.25 +

√[
(2.25)2 − (4 − x2)

]
. If x1 ≤ 2.25 − √[

(2.25)2 − (4 − x2)
]

agent 1 obtains
the good and pays 2x2 according to equation 4. If x1 ≥ 2.25− √[

(2.25)2 − (4 − x2)
]
,

then agent 1 again obtains good A, but this time, it pays 6 (again using equation 4).
Thus, it is always in the interest of agent 1 to state that its signal is in the lower range if
its signal happens to occur in either of these ranges. Although assumption 1 may seem
to be required only for our mechanism to work, this is not so, as it is required for any
efficient, incentive-compatible mechanism [9].

Now consider that the valuations of the good A are such that v1((A, ∅),x) = 2x1+
x2 and v2((∅, A),x) = 3x1 +x2 −6 (thus assumption 2 is not satisfied). In this case, it
is efficient to allocate A to agent 1 when x1 < 6 and to agent 2 otherwise. However, it
is not possible to achieve an efficient mechanism in this case, since agent 1 will always
state x1 < 6 no matter what the real value of x1 is. In the case of our mechanism, agent
1 pays x2 − 6 if it allocated the good. Since v1(A, ∅) is always higher than this, agent
1 will thus lie and always state a value of x1 < 6. This problem can again be shown
to extend to be symptomatic of any mechanism rather than our mechanism [4]. Notice
that with the original valuations in table 1, such a situation would not arise.

We next consider valuations that break assumption 3. Here the valuations of agents
1 and 2 for the allocation f = (AB, ∅) are v′1((AB, ∅),x) = 0.5x1 + 2x2 and



A Mechanism for Multiple Goods and Interdependent Valuations 23

1.0 1.5 2.0 2.5 3.0
2

4

6

8

10

12

14

16

Agent Signal (xi)

vI(AB, ∅)
vI(A, B)
vi(A, B)
v
′

i(AB, ∅)
v−i(A, B)
v
′

−i(AB, ∅)

f∗

1 = (AB,∅)

z−1
i

f∗

0 = (A,B)

vi(f∗

−1,x) − vi(f∗

0 ,x) = −0.25

v−i(f∗

0 , z−1
i

,x−1)
−v−i(f∗

−1, z
−1
i

,x−1) = −3

Value of Allocations

Fig. 2. Modified valuations of 1, 2 and I for allocations (AB, ∅) and (A,B) as x1 is increased

v′2((AB, ∅),x) = 3.5x1 as shown in figure 25. Since vI remains the same for all
the allocations, then z−1

i is still the same as shown in figure 2. Using these modified
valuations, agent 1 derives a higher utility of 1.75 (using equation 4 and the valua-
tion function) if it reports xi > 2 thereby leading to the mechanism no longer being
incentive-compatible. The reason this occurs is because if assumption 3 is broken we
then have that vi(f∗−1,x)−vi(f∗

0 ,x) > v−i(f∗−1, z
−1
i x−i)−v−i(f∗

0 , z−1
i x−i) as shown

in figure 2. As a result, the agent has an incentive to lie and quote a higher value than
z−1

i . Notice that this did not occur with the original valuations. Again this assumption
is required in order to find an efficient, incentive-compatible mechanism and is thus not
idiosyncratic to our mechanism [4].

Having thus illustrated the working of our mechanism and the necessity of the as-
sumptions via the use of an example, we now turn to formally proving the properties of
our mechanism.

5 Properties of the Mechanism

We next prove the properties of our mechanism. We first consider the economic proper-
ties; namely that it is incentive-compatible, efficient and strategy proof, whilst

5 Of course, in practice, agent 2 having a valuation for nothing is highly unlikely to occur.
However, we need to use this particular valuation in this case due to the simplicity of our
example in order to demonstrate what happens when one of the assumptions fails.
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intuitively explaining why the mechanism has the aforementioned properties. We then
consider the computational properties of the mechanism, showing that the mechanism
does not impose any added complexity on the agents’ bidding process compared to
what it would already face in an independent value scenario. However, it does increase
the complexity of calculating the payment, a computational load borne by the centre.

5.1 Economic Properties

Proposition 1. The mechanism is incentive-compatible in ex-post Nash Equilibrium.

A mechanism is incentive-compatible in ex-post Nash Equilibrium if it is a best re-
sponse strategy for the players to reveal their types truthfully even after they have com-
plete information about the signal values x.

Proof. Let v−i(.) =
∑

j∈−i(vj(.)) and vI(.) =
∑

i∈I(vi(.)). Suppose now that all
players except i report their signals truthfully (i.e. x̂−i = x−i). Let the optimal alloca-
tion when i reports truthfully be f∗

0 . We can then analyse the utility ui(.) that agent i
derives by reporting a certain x̂i. There are two cases that should be analysed namely
when x̂i < xi and x̂i > xi. The utility of an agent on reporting x̂i = xi is:

ui(f∗
0 ,x) = vi(f∗

0 ,x) +
m−1∑
l=0

(
v−i(f∗

l , zl
i,x−i) − v−i(f∗

l+1, z
l
i,x−i)

)
(6)

Now suppose an agent reports x̂i 	= xi but this does not change the optimal allocation
f∗
0 implemented. Then, ui(f∗

0 ,x) = ui(f∗
0 , x̂i,x−i). This is because if the allocation

does not change then the agent derives the same value vi(f∗
0 ,x) and payment as the

signals z0
i . . . zm

i are computed by the centre. Now consider the case that an agent re-
ports x̂i < xi such that this changes the allocation. Then some other optimal allocation,
which is necessarily one of the allocations f∗

1 , . . . , fm , is implemented. Denote the
resulting allocation when x̂i < xi as f∗

n (i.e. zn
i < x̂i ≤ zn−1

i ).
The utility that the agent gets from this new allocation is then:

ui(f∗
n,x) = vi(f∗

n,x) +
m−1∑
l=n

(
v−i(f∗

l , zl
i,x−i) − v−i(f∗

l+1, z
l
i,x−i)

)
(7)

The difference, Dn = ui(f∗
0 ,x) − ui(f∗

n,x) between truthful reporting and under re-
porting (as given by equations 6 and 7 respectively) is:

Dn = vi(f∗
0 ,x) − vi(f∗

n,x) +
n−1∑
l=0

(
v−i(f∗

l , zl
i,x−i) − v−i(f∗

l+1, z
l
i,x−i)

)
= vi(f∗

0 ,x) + v−i(f∗
0 , z0

i ,x−i) − v−i(f∗
n, zn

i ,x−i) − vi(f∗
n,x)

+
n∑

l=1

(
v−i(f∗

l , zl
i,x−i) − v−i(f∗

l , zl+1
i ,x−i)

)
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Since ∂v−i(f∗

l ,x)
∂xi

≥ 0, we thus have:

Dn >vi(f∗
0 ,x) + v−i(f∗

0 , z0
i ,x−i) − v−i(f∗

n, zn
i ,x−i) − vi(f∗

n,x)

>vi(f∗
0 ,x) − vi(f∗

0 , z0
i ,x−i) − vi(f∗

n,x) + vi(f∗
n, zn

i ,x−i) + vI(f∗
0 , z0

i ,x−i)
− vI(f∗

n, zn
i ,x−i)

However, by construction we know that vI(f∗
0 , z0

i ,x−i) > vI(f∗
n, zn

i ,x−i) and from
assumption 3 we also know that vi(f∗

0 ,x) − vi(f∗
0 , z0

i ,x−i) > vi(f∗
n,x) −

vi(f∗
n, zn

i ,x−i). We thus have Dn ≥ 0. On the other hand, if an agent reports x̂i > xi

and this induces an allocation f∗−n, then the utility it derives is:

ui(f∗
−n,x, ) = vi(f∗

−n,x, ) +
m−1∑
l=−n

(
v−i(f∗

l , zl
i,x−i, ) − v−i(f∗

l+1, z
l
i,x−i, )

)
(8)

The difference, D−n = ui(f∗
0 ,x) − ui(f∗

−n,x) between truthful reporting and under
reporting (as given by equations 6 and 7 respectively) is:

D−n = vi(f∗
0 ,x) − vi(f∗

−n,x) −
−1∑

l=−n

(
v−i(f∗

l , zl
i,x−i) − v−i(f∗

l+1, z
l
i,x−i)

)

= vi(f∗
0 ,x) − vi(f∗

−n,x) −
−1∑

l=−n

(
vI(f∗

l , zl
i,x−i) − vI(f∗

l+1, z
l
i,x−i)

)

+
−1∑

l=−n

(
vi(f∗

l , zl
i,x−i) − vi(f∗

l+1, z
l
i,x−i)

)
= vi(f∗

−n, z−n
i ,x−i) − vi(f∗

−n,x) − vi(f∗
0 , z−1

i x−i) + vi(f∗
0 ,x)

−
−1∑

l=−n+1

(
vi(f∗

l , zl−1
i ,x−i) − vi(f∗

l , zl
i,x−i)

)
Using assumption 3 implies that D−n ≥ 0. We thus see that i derives highest utility
when reporting x̂i = xi.

Proposition 2. The mechanism is efficient.

This implies that the centre finds the outcome such that f∗ = arg maxf

∑
i∈I vi(f,x).

Proof. The above is a result of the incentive-compatibility of the mechanism. Since the
goal of the centre is to achieve efficiency, then given truthful reports, the centre will
achieve efficiency.

Proposition 3. The mechanism is individually rational.

A mechanism is individually rational if there is an incentive for agents to join it rather
than opting out of it. We begin by assuming that the utility an agent derives from not
joining the mechanism is 0. Then, we need to prove that the utility an agent derives in
the mechanism is always ≥ 0.
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Proof. Given that the agents are incentivized to report truthfully, agent i derives utility:

ui(f∗
0 ,x) = vi(f∗

0 ,x) +
m−1∑
l=0

(
v−i(f∗

l , zl
i,x−i) − v−i(f∗

l+1, z
l
i,x−i

)
= vi(f∗

0 ,x) +
m−1∑
l=0

(
vI(f∗

l , zl
i,x−i) − vI(f∗

l+1, z
l
i,x−i)

)
−

m−1∑
l=0

(
vi(f∗

l , zl
i,x−i) − vi(f∗

l+1, z
l
i,x−i)

)
Since vI(f∗

l , zl
i,x−i) = vI(f∗

l+1, z
l
i,x−i) (from equation 2):

ui(f∗
0 ,x) = vi(f∗

0 ,x) −
m−1∑
l=0

(
vi(f∗

l , zl
i,x−i) − vi(f∗

l+1, z
l
i,x−i)

)
= vi(f∗

0 ,x) − vi(f∗
0 , z0

i ,x−i) + vi(f∗
m, zm

i ,x−i)

+
m−1∑
l=1

(
vi(f∗

l , zl
i,x−i) − vi(f∗

l , zl+1
i ,x−i)

)
From equation 3, vi(f∗

m, zm
i ,x−i) = 0. Now, since ∂vi(K,x)

∂xi
≥ 0, thus ui(f∗

0 ,x) > 0.

5.2 Computational Properties

In order for a mechanism to be of use in real world scenarios, we must not only consider
its economic properties but also its computational complexity. An important distinction
is to differentiate between the computational load which is imposed on the agents within
the auction and that imposed on the auctioneer or centre. Specifically, we will analyse
the computational properties of the mechanism as opposed to that faced by agents in
a standard VCG mechanism. In so doing, we aim to quantify the computational cost
that the added richness of this mechanism (namely the ability to express interdependent
valuation) imposes.

Outcome Determination. In our mechanism, the centre will need to solve equation 1,
which is similar to the winner determination equation in the VCG mechanism,
in order to determine the efficient allocation. In both cases the computation in-
volves solving a combinatorial allocation problem which is, in the general case,
NP-hard [12]. In fact, the size of the set over which the optimisation is carried out
is the same in both cases since this is determined by the number of items |M |. Thus
our mechanism imposes no additional computational load in terms of the centre
calculating the allocation. However, in terms of calculating the payments to the
agents, our mechanism does impose a larger computational load. In the case of the
VCG mechanism, calculating the payment involves performing the winner deter-
mination problem |I| times over the reduced set of agents I \ i (see [5] for more
details). However in our case, the centre needs to successively reduce the value of
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the report from each agent (and calculate the optimal allocation at each stage) until
it reaches an allocation which is the optimal one for the reduced set of agents I \ i
(see equations 2 and 3). In the worst case scenario, we have to traverse through all
possible allocations (except the efficient one) when calculating the different zl

i for
each agent i ∈ I. For m goods in a combinatorial auction, this requires 2m −1 cal-
culations and is thus exponential in complexity. However, typically, the number of
allocations that need to be traversed (i.e the Ki

l ) will be much less than 2m and there
is some redundancy between the calculation of the Ki

l in between the agents in I.
We will exploit this redundancy in future work so as to reduce the computational
load on the centre.

Preference Formulation. In the case of a direct mechanism such as the VCG mech-
anism or our mechanism, the agents do not have additional computational load in
formulating their preferences over all possible outcomes. This is because the agents
transmit their observed signal θi to the centre and thus do not actually compute
vi(K, θ) over all K ∈ K. Rather it is the centre which performs this calculation for
each agent when solving the winner determination problem. Thus, our mechanism
in this case does not add any computational load on the agents.

Strategy Selection. In the VCG mechanism the agent knows a priori that it has a dom-
inant strategy, and thus this computational problem does not arise. In our case, an
agent has an ex-post Nash strategy. Thus if all the agents are behaving rationally,
there is no computational load on the agent in this particular case. However, if it
becomes common knowledge that some agent is not playing its best-response strat-
egy (i.e. some agent is not rational) then the agents will have to search through their
space of strategies again to find their best-response.

Thus, we can observe that there is no additional computational load on the agents
when compared with a standard VCG mechanism. Thus we can use the computationally
efficient bidding languages developed for VCG mechanisms [11,10]. This is important
since in many proposed applications, whilst the centre may have significant computa-
tional power, the agents will be represented by distributed devices of limited computa-
tional power.

6 Conclusions and Future Work

In this paper we considered an important class of auctions in which the bidders have in-
terdependent valuations (based on a single dimensional signal measured by each bidder)
and bid for multiple goods. In this context, we have significantly extended the standard
VCG mechanism and proved that the ensuing mechanism has the ideal economic prop-
erties of being efficient, incentive compatible and individually rational. Our mechanism
is general and reduces to the VCG mechanism whenever there are independent valua-
tions (as seen in section 3). Thus, we can visualise our mechanism being used even in
MAS where the designer is unsure whether the valuations are interdependent or not.

Whilst we have presented our mechanism in terms of resource allocation, it can
be easily converted into a task allocation scenario. In such a scenario, agents will first
submit cost functions instead of valuation functions. Then, we need to perform a min-
imisation instead of a maximisation in equations 1, 2 and 3 and take supremums instead
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of infimums in equations 2 and 3. With these changes, the mechanism still conserves
both its computational and economic properties in the task allocation scenario.

Our future work in this area concerns two issues. The first issue will concentrate
on how to design mechanisms which take into consideration multi-dimensional signals.
Such signals are known to better characterise the preferences of agents in certain MAS
such as in a procurement auction where both the price and date of delivery are impor-
tant [1]. These mechanisms are known not be efficient in an interdependent scenario as
a result of the impossibility result due to Jehiel and Moldovanu [6]. However, we aim
to calculate the loss in efficiency when taking into consideration multi-dimensionality.
The second issue is concerned with the question of the computational complexity of the
resulting mechanism. We have seen that allowing for interdependent valuations comes
at the cost of additional computational complexity on the centre. We intend to investi-
gate methods to reduce this load, by reducing the space of allocations that need to be
considered when computing the payments to the agents (as discussed in section 5). Our
aim is to achieve a mechanism whose complexity is no greater than that of performing
the task of winner determination in the underlying auction.
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Abstract. Many practical scenarios involve solving a social choice prob-
lem: a group of self-interested agents have to agree on an outcome that
best fits their combined preferences. We assume that each outcome
presents a certain utility to an agent and that the best outcome is the
one that maximizes the sum of these utilities. We call a mechanism for
solving social choice problems incentive-compatible if for each agent, the
behavior that maximizes its own utility is also the one that maximizes
the group’s utility.

One way to achieve incentive-compatibility is the Vickrey-Clarke-
Groves (VCG) tax ([5]) mechanism. However, it produces a surplus of
taxes that cannot be redistributed to the agents and can severely re-
duce agents’ utilities. Game theory has shown that it is not possible to
have a general scheme that is incentive-compatible, budget-balanced and
guarantees a Pareto-efficient solution.

We present a scheme that sacrifices Pareto-efficiency to achieve budget
balance while being both incentive-compatible and individually rational.
On randomly generated social choice problems, the scheme results in
significantly better overall agent utility than the VCG tax mechanism.

1 Social Choice Problems

Many practical situations involve social choice: a group of agents has to choose
from a fixed set of choices an outcome that best fits their combined preferences.
For example, a group going out have dinner together has to choose a restaurant
that fits everyone’s preferences. Tenants of a building have to decide on features
of a planned renovation. Spectrum has to be divided up among different mobile
telephone providers.

A mechanism for solving a social choice problem takes as inputs declarations
of the agents’ utilities for each outcome, and outputs as a solution the optimal
choice and possibly other information.

Social choice problems become difficult to solve when agents have conflict-
ing preferences, as each agent will exaggerate its preferences to obtain a better
outcome for itself. It is possible to counteract this tendency using tax schemes
where agents have to pay for the preferences they claim. An example of such tax
schemes are auctions: the social choice is to decide who receives the good, and
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the winner has to make a payment that depends on how strongly he claims to
value the good. Note that while auctions are a special case of social choice, re-
verse and double auctions as the outcome space is not independent of the agents
(an agent may not agree to give up an item).

In an incentive-compatible (IC) mechanism, the incentives of each agent are
aligned with those of the group: the behavior that optimizes the utility of an
individual agent also optimizes the utility of the group. When utility optimiza-
tion is left to the social choice mechanism, this often corresponds to each agent
being best off declaring its preferences truthfully; this is called truthful or strate-
gyproof. Such a mechanism makes life easy for the agents since they do not have
to speculate to obtain the best outcome. It also avoids choosing a suboptimal
outcome because of such speculation.

A well-known mechanism for achieving IC is the Vickrey-Clarke-Groves
(VCG) tax ([5]) mechanism. It assumes that the mechanism chooses an out-
come that maximizes the sum of agents’ utilities (called the Pareto-efficient
outcome, PE), and makes each agent pay a tax that is calculated so that the
agent cannot gain from misreporting its utility. Furthermore, the VCG tax is
individually rational (IR) in that the tax paid by an agent never exceeds the
utility gain it gets from participating in the optimization as opposed to letting
the other agents pick the outcome.

Any tax mechanism produces a surplus of taxes that cannot be redistributed
to the agents without loosing the incentive-compatible property, i.e. they are
not budget-balanced (BB). In game theory, it has been shown that all incentive-
compatible mechanisms that apply to general social choice problems and always
generate a Pareto-efficient outcome must use a tax of a form similar to the
VCG tax ([7,9]). It has further been shown that such a mechanism cannot be
budget-balanced ([7,10]).

In the special case of auctions, the surplus can be used to pay the sellers
of the goods; the resulting VCG scheme is called the Vickrey auction protocol.
However, in many cases, there is no use for this surplus. It reduces agents’
utilities, and creates incentives for the receiver of the surplus to manipulate the
setting to maximize taxes. For example, in spectrum allocation, governments
can obtain huge windfall profits by creating scarcity, but in so doing hurt the
public in general.

Since the lack of budget-balance may cause huge losses to the involved agents,
we consider IC and IR mechanisms that do not always choose the Pareto-efficient
outcome, but achieve budget balance. In particular, we propose a novel random-
ized scheme that can be applied to any tax mechanism to achieve budget balance.
It preserves all IC and IR properties of the underlying tax scheme, but gener-
ates suboptimal solutions, i.e. it is not Pareto-efficient. On randomly generated
constraint optimization problems, it can be seen that the loss of agent utility
due to the lack of PE is in general much smaller than the loss they would incur
through the taxes in a VCG mechanism. The mechanism has much better per-
formance than previous proposals, and shows an interesting new direction for
solving social choice problems.
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We model social choice problems as general constraint optimization
problems. In Section 2, we formally define the framework and give an exam-
ple of a social choice problem formulated in this way. In Section 3, we review the
properties of tax schemes. Section 4 introduces our new mechanism, and Section
5 presents examples and experimental results. Section 6 presents extensions of
the mechanism. Section 7 presents related work, and Section 8 the conclusions.

2 Modeling Social Choice Problems

A social choice problem can be simply formulated a a choice among a set of
possible outcomes. However, it is often useful to further structure this outcome
space. In particular, we assume that the outcome space is the set of solutions to
a constraint satisfaction problem (CSP). It is defined by a set of variables that
can be assigned values in associated domains. A solution is a combination of
value assignments to all variables such that a set of constraints is simultaneously
satisfied. Note that the space of possible outcomes is independent of the agents’
actions; thus, there can only be negative externalities and it is for example not
possible to model a double auction as a social choice problem.

Based on the CSP formulation, we model social choice problems as multi-
agent constraint optimization problems. These are CSP where a set of agents
has declared relations that specify the utilities they attach to different value
combinations. Formally, they are defined as follows:

Definition 1. A discrete multi-agent constraint optimization problem (MCOP)
is a tuple < A, X, D, C, R > where:

– A = {A1, .., Ak} is a set of agents.
– X = {x1, .., xn} is a set of variables.
– D = {d1, .., dn} is a set of domains of the variables, each given as a finite

set of possible values.
– C = {c1, .., cp} is a set of constraints, where a constraint ci is a function

di1 × .. × dil → {0, 1} that returns 1 if the value combination is allowed and
0 if it is not.

– R = {r1, .., ro} is a set of relations, where a relation ri is a function di1 ×
.. × dil → � giving the utility of choosing each combination of values.

– Ri is the subset of R that gives the relations associated with agent Ai.

A solution to an MCOP is a consistent assignment to the underlying CSP
that maximzes the sum of the agents’ utilities. Formally, we define:

Definition 2. An assigment V is a combination of values x1 = v1 ∈ d1, .., xn =
vn ∈ dn.

We write ri(V ) and ci(V ) for the result of applying ri or ci, respectively, to
the relevant variables with the assignments in V .

An assignment V is consistent if all constraints are satisfied, i.e. (∀ci ∈
C)ci(V ) = 1.

An MCOP is solvable if there is at least one consistent assignment.
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We write V ∗
R for the consistent assignment such that the sum of the utilities

obtained by the relations corresponding to R is maximal; if there are several such
assignments it is the one that is lexicographically smallest. We use v∗R(xi) for
the value of xi in that assignment.

The solution to a MCOP is the assignment V ∗
R where R is the set of all

relations of the MCOP.

In this paper, we only consider solvable MCOP. When an MCOP is unsolvable,
the social choice problem itself has no solution.

As an example, consider the following social choice problem. A building has
4 tenants, represented by agents A1 through A4. he tenants have to agree on
three architectural features X = {x1, x2, x3} of a planned renovation. For the
three features, we have options x1 ∈ d1 = {A, B, C}, x2 ∈ d2 = {A, C} and
x3 ∈ d3 = {B, C}. For structural reasons, the combination of x2 = A and
x3 = C is not allowed, but all other combinations are feasible. This restriction
is modelled by a constraint.

Each agent attaches different utilities to a feature or feature combination.
Specifically:

– for agent A1 and any of the three features, choosing A has a utility of -1, B
a utility of 0 and C a utility of +1.

– for agent A2, the utility is determined by the combination of features x1 and
x2 according to the following table:

(x1, x2) (B,C) (C,C) (A,C) (B,A) (C,A) (A,A)
utility 2 2 1 -1 -1 -3

– for agent A3, the utility is determined by the combination of features x1 and
x3 according to the following table:

(x1, x3) (A,C) (C,C) (A,B) (C,B) (B,C) (B,B)
utility 2 2 1 -1 -1 -3

Finally, agent A4 attaches the following utilities to combinations of assignments:

(x1, x2, x3) utility (x1, x2, x3) utility (x1, x2, x3) utility
(A,A,B) 3 (B,A,C) 1 (B,C,C) -1
(B,A,B) 3 (B,C,B) 1 (C,A,C) -1
(A,A,C) 1 (C,A,B) 1 (C,C,B) -1
(A,C,B) 1 (A,C,C) -1 (C,C,C) -3

The optimal solution to this problem is the combination x1 = C, x2 = C, x3 =
C, which provides a total utility of 4. However, this solution can only be found
if agents report their true utilities. In this example, agent A4 could exaggerate
its utility for combination x1 = B, x2 = A, x3 = B to 10. This would give it
an overall supposed utility of 5, and make it the one chosen by the mechanism.
Agent A4 has improved its own utility from -3 to +3, but the true overall utility
has decreased from +4 to -2. Other agents may follow similar reasoning and
perturb the result further.
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3 Achieving Incentive-Compatibility

The incentives of each agent can be aligned with those of the group by mak-
ing each agent pay a tax reflecting the cost that their preferences are causing to
others. A well-known mechanism is the Vickrey-Clarke-Groves (VCG) tax mech-
anism ([14,5,8]). Its application for multi-agent decision making has already been
proposed in [6].

In the VCG mechanism, each agent pays the difference in other agents’ utili-
ties of the optimal solution when it is not present and the optimal solution when
it is. Recall that Ri is the set of relations Ri imposed by agent Ai. The tax,
called the Clarke tax, is then:

V CGtax(Ai) =
∑

rl∈R\Ri

rl(V ∗
R\Ri

) − rl(V ∗
R)

The VCG tax has the effect of making the objectives of each individual agent
that of optimizing the sum of all agent’s utilities.

If the optimization is left to the social choice mechanism, this makes it a
dominant strategy equilibrum for each agent to declare its utilities truthfully.

In our example, we consider the following solutions:

Solution u(A1) u(A2) u(A3) u(A4) total
v∗R = (C, C, C) 3 2 2 -3 4
v∗R\R1

= (A, C, B) 0 1 1 1 3
v∗R\R2

= (C, C, C) 3 2 2 -3 4
v∗R\R3

= (B, C, B) 1 2 -3 1 1
v∗R\R4

= (C, C, C) 3 2 2 -3 4

Thus, the VCG tax payments of the agents would be:

Agent VCG tax
A1 3-1 = 2
A2 2-2 = 0
A3 4-2 = 2
A4 7-7 = 0

The example shows that the truth-inducing property of the tax can come at
a high cost: in this example the total tax paid, 4 units, completely erases the
utility of 4 that the agents jointly get out of their renovation.

4 Budget Balanced Mechanisms for Social Choice

The main difficulty with applying tax schemes to social choice is that they gen-
erate a surplus of taxes that reduces overall agent utility and creates unwanted
incentives for whatever party gets this surplus. We now show a simple scheme
that is always strictly budget balanced, but produces sub-optimal solutions. We
assume that the agents are solving an MCOP whose variables, domains and
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constraints are fixed and known. Furthermore, we are going to assume that the
MCOP is solvable, i.e. it has at least one consistent assignment.

The basic idea is to randomly select an agent or a group of agents whose
relations will receive a lower priority in the optimization. In return, this agent
or group of agents will be paid the tax collected from the remaining agents. The
scheme is by definition budget balanced since all taxes are paid between the
agents themselves. Since the agents receiving the tax have no influence on the
declarations and thus the taxes of the remaining agents, the scheme preserves all
incentive-compatibility properties of the tax scheme itself. However, it chooses
solutions that are not optimal for all agents and is thus not Pareto-efficient.

We now present several budget balanced social choice mechanisms based on
this idea. We assume that the tax scheme is that of a VCG tax. However, the
mechanisms can be applied with any tax scheme, including the first-price tax
where agents pay the declared utilities in the chosen solution.

In this paper, we consider the following mechanism:

Mechanism 1. 1. Each agent Ai ∈ A, i = 1..k is asked to state its relations.
2. Choose an excluded coalition E of one or more agents using a method that

does not depend on the relations stated by the agents.
3. Compute the assignment:

SE = V ∗
R\RE

where RE =
⋃

Al∈E Rl. Optionally, if there are several equally optimal as-
signments, choose the one with the best utility according to the relations in
RE.

4. Make each agent Ai pay to agents in E the VCGtax for the solution SE:

pay(Ai → E) = V CGtax−E(Ai)

=
∑

rm∈R\(Ri∪RE)

rm(V ∗
R\(Ri∪RE)) − rm(V ∗

R\RE
)

and distribute the tax among the agents in E according to some predeter-
mined scheme.

The excluded coalition can be chosen by any mechanism that does not depend
on the utility declarations of the agents. In the interest of fairness, it will often
be useful to make this choice randomly. The excluded coalition can consist of one
or more agents. In most cases, it will be best to choose only a single agent and
let the optimization take into account the relations of a maximum number of
agents. However, we will see later that larger coalitions may be useful in certain
circumstances.

We now show several properties of Mechanism 1.

Proposition 1. Mechanism 1 is incentive-compatible ex-post.

Proof. Consider an agent Ai.
When Ai ∈ E, the agent’s declarations have no influence on the outcome nor

its tax (which is equal to 0), so it cannot gain by misreporting.
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When Ai 	∈ E, then the chosen solution is optimal for a social choice prob-
lem where Ai is included. Each agent pays the VCG tax corresponding to that
problem. This tax is known to be incentive-compatible ex-post.

Proposition 2. Mechanism 1 is individually rational ex-post.

Proof. Consider an agent Ai.
When Ai ∈ E, the mechanism chooses a solution that does not consider

the utilities of Ai. Its utility is not worse than if it had not participated in
the mechanism at all, and it pays no tax. Thus, it is individually rational to
participate.

When Ai 	∈ E, Ai is included in the optimization, and it pays the VCG tax.
This scheme is known to be individually rational ex-post.

Proposition 3. Mechanism 1 is budget balanced ex-post.

Proof. All taxes are paid to agents in the excluded coalition E, so no tax
surplus or deficit remains to be distributed.

For the example problem, assume that the mechanism chooses to randomly
leave out each of the 4 agents individually with probability 1/4. We then have
the following payments:

Solution tax(A1) tax(A2) tax(A3) tax(A4)
v∗R\R1

= (A, C, B) -5 2 1 2
v∗R\R2

= (C, C, C) 5 -7 2 0
v∗R\R3

= (B, C, B) 0 0 -2 2
v∗R\R4

= (C, C, C) 0 0 0 0
Average tax 0 -5/4 1/4 1

The mechanism is obviously not Pareto-efficient, as it does not always chose
the optimal solution as the final result. However, while the VCG tax mechanism
chooses the Pareto-efficient solution, the tax payments cause considerable utility
loss. As we have seen before, in the optimal solution of this example, the joint
utility of the agents is 4 and is completely eaten up by the sum of the VCGtaxes
which is also 4. Thus, the expected utility to the community of agents is 0. In
contrast, in Mechanism 1 the expected utility is

1/4 · (3 + 4 + 1 + 4) = 12/4 = 3

which is significantly better. In fact, for this example it is better than the VCG
mechanism no matter what agent is excluded from the optimization.

The mechanism may have a choice of several solutions SE that have equal
utility for the agents except E, but different utilities for agents in the excluded
coalition E. This can lead to variations in the efficiency of the mechanism. For
example, the solution (A, A, B) is also optimal for v∗R\R2

, but it has a total
utility of -1. If this had been chosen as the solution in the scenario given above,
the expected utility in Mechanism 1 would be 7/4 instead of 3 (but still better
than in the VCG mechanism). This shows the importance of choosing the best
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solution for agents in the excluded coalition as well. This optimization could also
be done by letting agents in E choose which of several equivalent solutions SE

is to be chosen to minimize their costs.

5 Examples and Experimental Results

As another example, consider an auction of a single item among three agents
A1, A2 and A3. It can be represented by a variable x that represents the final
allocation of the good by an integer 1, 2 or 3 indicating which agent gets the
good. Let the agents’ valuations be expressed by the relations r1, r2 and r3 on x
as follows:

x = 1 2 3
r1 a 0 0
r2 0 b 0
r3 0 0 c

and assume that a < b < c, i.e. A3 values the good the most. We assume that the
mechanism chooses as excluded coalition a single agent, where each of the three
agents is chosen randomly with probability 1/3. We have the following solutions
Si = v∗R\Ri

(x):

Solution S1 S2 S3

x= 3 3 2

which gives us the following expected taxes and utilities:

Ai E[tax] pr(x = i) E[u(Ai)]
A1 1/3 (-b) 0 b/3
A2 0 1/3 b/3
A3 1/3 b 2/3 2c/3 - b/3

We can verify that no agent has an incentive to misreport its valuation:

– if agent A1 overreports a valuation a′ so that a′ > b > a, its true expected
utility drops from b/3 to a/3. Underreporting has no effect.

– if agent A2 underreports a valuation b′ so that b > a > b′, then its true
expected utility drops from b/3 to a/3. If it overreports b′ so that b′ > c > b,
then its true expected utility drops to 2b/3 − c/3.

– if agent A3 underreports a valuation c′ so that c > b > c′, then its true
expected utility drops to c/3. Overreporting has no effect.

In comparison, in a VCG tax scheme, the Vickrey auction, agent A3 always gets
the good and pays tax b, and both other agents get nothing. Only agent A3 has
an expected utility of c−b. Thus, agents A1 and A2 are always better off, whereas
A3 is better off only as long as c ≤ 2b. This condition is likely to be satisfied in
competitive markets where valuations tend to be close to one another.
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The major difference with classical auction schemes is that this way of allo-
cating the good does not produce any revenue for a third party. Such a revenue-
free auction is often desirable for public goods such as airport slots, water or
pollution rights, and the use of distribution networks.

It is possible to construct cases where in spite of the wasted tax, the VCG
mechanism would still achieve better overall efficiency. This would arise when
leaving one agent out of the optimization would give only a marginally better
result for the remaining agents, but a significantly worse result for the agent that
was excluded. Consider the following example: n people have to go from Geneva
to London. They can get a group ticket for up to n−1 people on Swiss at a cost
of $100 per person, or a group ticket on British Air for up to n people at a cost
of $110 per person. They can also buy individual tickets for a business jet at a
cost of $10′000 per person.

The optimal solution for any subset of n−1 agents it to buy a group ticket on
Swiss, forcing the remaining agent to buy an individual ticket. Mechanism 1 will
chose one of these solutions, so the total cost to all agents is $100(n−1)+$10′000,
and no agent pays any tax. For n = 10, this amounts to $10′900.

A VCG mechanism chooses the overall best solution: buy a group ticket
on British Air. The total expense is $110n, but on top of this each agent has
to pay a tax of $(110 − 100)(n − 1). Thus, the total expense for all agents is
$110n + $10n(n − 1). For n = 10, this amounts to $2′000, significantly less than
with Mechanism 1. In fact, the VCG scheme will be better as long as n < 33.

On randomly generated problems, we have observed that on average the VCG
tax is much larger than the degradation in solution quality incurred by using a
suboptimal solution. Figure 1 shows a comparison on randomly generated prob-
lems with 5 to 11 variables. The problems involve as many agents as variables.
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Fig. 1. Costs for randomly generated constraint optimization problems where each
variable belongs to a different agent. It shows the total cost to all agents of the optimal
solution, the total VCG tax paid by all agents, the degradation of the total cost when
the suboptimization solution is used, and the average VCG tax paid by one agent.
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For each agent, we randomly generate several binary relations (between 2 vari-
ables) where each value combination is assigned a valuation between 0 and 1
with a uniform random distribution, and the number of constraints is limited
so that the problem is solvable. We apply Mechanism 1 where a each agent is
excluded individually with equal probability.

Figure 1 shows the following quantities:

– the solid line shows the total cost of coexistence in the optimal solution. This
is the difference of the total agent utilities if each of them could choose the
solution it preferred and the ones obtained in the optimal joint solution.

– the dashed line (lowest in the figure) shows the average degradation in the
total agent utility when one agent’s constraints are not taken into account
in the optimization.

– the lightly dotted line (second lowest in the figure) shows the average VCG
tax that an agent would have to pay in the VCG (Clarke) tax mechanism.

– the densely dotted line (second highest in the figure) shows the total of all
VCG taxes that would have to be paid by all agents.

The experiment shows that the VCG tax mechanism makes agents pay an
amount of tax that is almost comparable to the utility loss due to their co-
existence. While the tax per agent tends to decrease slightly with the number
of agents, the total amount of taxes and thus the loss of social welfare continues
to increase with problem size. On the other hand, the cost of the degradation
incurred by having a single agent excluded of the optimization is much smaller.
In fact, it is comparable or even below the average VCG tax for a single agent.
This means that on average, even the agent that is excluded from the optimiza-
tion would tend to get a comparable or better utility than it can expect in the
VCG mechanism!

Another experiment has been conducted on resource allocation in the trans-
portation (or communication) network shown by the graph in Figure 2, where
each agent has different (randomly varied) costs for the arcs. We randomly gen-
erate tasks which require using a path between two points in the network. For
each task, we calculate up to three shortest disjoint paths and define a decision
variable whose domain is the cross product of the path to use and the agent that
executes it. A further value is provided that corresponds to not executing the
task at all. Constraints specify that no two tasks be assigned to paths that share
an arc. Each agent is asked to evaluate the costs for the three different paths
and thus state its utility (task payoff - cost) if it were assigned the task and the
corresponding path.

Figure 3 shows the performance of Mechanism 1 compared to an optimization
with a VCG mechanism. The bars show the average total utility to all agents
in the optimal (shaded) and optimal with one agent excluded (black) solutions.
The curves show the average total amount of tax in a VCG mechanism, and
the resulting net total utility. It can be seen that even as the number of tasks
increases, the utility of the suboptimal solution remains close to that of the
optimal solution. While the total amount of VCG tax levels off as the number
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Fig. 2. Network used for resource allocation experiment

Fig. 3. Utilities achieved by different mechanisms in the experiment

of tasks increases, there is still a large amount of tax that needs to be wasted
and causes utility loss to the agents.

6 Collusion

It is a well-known fact that VCG tax schemes are vulnerable to collusion: coali-
tions of agents can act together to achieve unfair advantages over the others. In
our example, suppose that agent A4, who fares particularly badly in the optimal
solution, bribes agent A3 to help it impose solution x1 = A, x2 = A, x3 = B.
The result lowers A3’s utility by 1 but increases A4’s utility by 6, so A4 can pay
A3 3 units for its trouble and both will benefit from the manipulation. A3 and
A4 can impose this solution by each adding a ternary relation between all three
variables that would give utility 100 to this value and 0 to all other combina-
tions. Since the solution would remain the same if either A3 or A4 was removed,
no agent would pay any taxes, so the manipulation comes for free.

In auctions, collusion can be avoided by using mechanisms that make bidders
pay their bid rather than the second highest bid. Similarly, we can define a tax
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mechanism for social choice, which we call the first-price tax, where every agent
pays as tax the utility gain it gets in the chosen solution, i.e.:

Ftax(Ai) =
∑

rl∈Ri

rl(V ∗
R)

Obviously, the first-price tax is not incentive-compatible, as agents have an in-
terest to claim a lower utility for the optimal solution and a higher utility for
the case where they are excluded. However, it does protect against overclaim-
ing true utilities since an agent that does so will be forced to pay a higher tax
than its true utility should the particular solution be chosen. Furthermore, there
are ascending-price elicitation schemes, such as the Ausubel auction, that allow
first-price schemes to become incentive-compatible in certain cases.

Mechanism 1 can be readily adapted to use a first-price tax rather than a
VCG tax as the underlying tax scheme. It is instructive to see what the effect
of such a modification is in the example of the revenue-free auction. We would
obtain the following expected taxes and utilities:

Ai E[tax] pr(x = i) E[u(Ai)]
A1 1/3 (-c) 0 c/3
A2 b/3-c/3 1/3 c/3
A3 c/3 2/3 c/3

Thus, in this example, if all agents report the truth, the mechanism will make
them all have equal expected utility. Note however that it is obviously in the
interest of all agents to speculate by underclaiming utilities. This process can be
supported using an ascending-price mechanism similar to English auctions that
can be readily adapted to this scenario.

7 Related Work

The social choice problem has been the subject of considerable interest in eco-
nomics, game theory and more recently computer science research, and there
is therefore a large amount of related work that is impossible to survey accu-
rately and completely here. Examples of surveys are Moulin ([9]) and recently
Chung and Ely ([4]), but there are numerous others. Game theory has largely fo-
cussed on the feasibility rather than design of actual mechanisms. Fundamental
results ([7,10]) show that it is impossible to have a budget balanced, Pareto-
efficient and incentive-compatible mechanism for the general case.

A first approach to design feasible mechanisms is based on relaxing one of
the conditions. Vickrey-Clarke-Groves mechanisms ([14,5,8]), in particular the
Clarke tax ([5]), are Pareto-efficient, incentive-compatible and individually ra-
tional, but in general not budget balanced.

One can easily imagine mechanisms which are incentive-compatible, budget
balanced but not efficient, such as simply choosing a solution at random or
choosing a solution that is optimized for agents according to a fixed priority
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sequence. The approach described here is similar, but comes much closer to an
optimal result and thus provides much higher utility to the agents.

Parkes et al. ([12]) have investigated VCG mechanisms which are only ap-
proximately incentive-compatible in order to achieve budget balance. Since it is
not known a priori what benefits manipulation can bring in a particular case,
such a mechanism places a burden on agents who need to evaluate potential
manipulations for possible gains.

The dAGVA mechanism ([3,1]) is an example of a mechanism that is Pareto-
efficient, incentive-compatible, and budget balanced and individually rational on
average. However, it requires a-priori knowledge of the true probability distrib-
utions of the agent’s preferences, which is rarely available in practice.

A second approach is to relax the requirement of a general mechanism that
works for all valuation structures, and design a mechanism specifically for a par-
ticular scenario. Recent work on automated mechanism design ([13]) has shown
that given the exact valuations for each of the agents’ types, it is computation-
ally feasible to search for mechanisms that have all desired properties. However,
this process requires that the uncertainty about agent’s preferences is limited to
a finite set of types rather than continuous valuations.

8 Conclusions

The internet has enabled the creation of networked enterprises consisting of
multiple agents. So far, most protocols for optimizing their collective behavior
have assumed cooperative behavior but neglected the presence of self-interest.

When self-interest has to be taken into account, the best existing solutions
for optimal behavior are based on auctions. However, auctions are not budget
balanced: they generate a surplus that reduces agents’ utilities and creates un-
wanted incentives for the party that receives it. This is the case in particular
for the Clarke tax ([5]), the most well-known mechanism for dealing with self-
interest in social choice.

Since economists have shown many impossibility results (for example, [7,10])
that prove that it is impossible to combine incentive-compatibility, optimality
and budget balance, it is unlikely that this can be overcome in general.

This paper has presented a mechanism that chooses a solution that is optimal
for all but a group of excluded agents. In this way, any tax or auction scheme
can be made budget-balanced by returning the surplus to the excluded agents.
The important observation is that the quality of the solution optimized for all
but a small group of agents is very close to that of the solution optimized for all
agents. In fact, the loss of utility incurred by this suboptimal solution is much
smaller than the loss that would be incurred through the wasted taxes. Thus, it
provides an attractive scheme for achieving budget-balance that can be applied
to any auction scheme.

In contrast to other proposals for budget balanced mechanisms, our proposal
is general and applies to any quasilinear utility function. It also does not require
any a-priori knowledge of agent’s preferences.
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Abstract. Current auctions often expose bidding agents to two difficult, yet com-
mon, problems. First, bidding agents often have the opportunity to participate in
successive auctions selling the same good, with no dominant bidding strategy
in any single auction. Second, bidding agents often need to acquire a bundle of
goods by bidding in multiple auctions, again with no dominant bidding strategy
in any single auction. This paper introduces an options-based infrastructure that
respects the autonomy of individual sellers but still enables bidders to utilize a
dominant, truthful strategy across multiple auctions.

1 Introduction

Many authors (e.g., [8]) have written about a future in which commerce is mediated by
automated trading agents. Yet, we believe that one leading place of resistance is in the
lack of optimal bidding strategies for any but the simplest of market designs. Although
it is popular to appeal to computational mechanism design [5], and try to design truthful
auctions to address this problem, it is nevertheless clear that a single truthful mechanism
cannot exist for all transactions in which an agent has an interest. Somewhere, at some
point, there must be boundaries between mechanisms [20].

This work proposes a new options-based market infrastructure, that can enable sim-
ple yet optimal bidding strategies, while retaining the seller autonomy that is the defin-
ing feature of the most successful of today’s electronic markets. Although eBay acts as
an intermediary of sorts, eBay does not gather up the goods for sale by multiple sellers
and run them within a single coordinated event. Rather, eBay is an open environment in
which each seller chooses: a) when to bring a good to market; and b) the kind of auc-
tion to use. Buyers then pick-and-choose across auctions, before submitting bids and
making purchases.

One problem encountered in environments like eBay is the exposure problem. Peo-
ple would like to acquire multiple items, but may end up only holding a subset of those
items at the end. For example, imagine Alice would like to buy both Peanut Butter (PB)
and Jelly (J), but has to participate in two different auctions in order to acquire both
items. Alice may bid enough to win the PB, but may subsequently not win the J . In
doing so, she is left exposed, having spent money in acquiring the PB, but unable to
derive any benefit without also acquiring the other item she desired. Another problem
occurs when multiple copies of an item are offered for sale sequentially. For example,
Alice may want PB, and could potentially bid in either a 1 o’clock or 3 o’clock auc-
tion. While Alice would prefer to participate in whichever auction will have the lower
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winning price, she can not determine beforehand which auction that may be, and could
end up winning in the wrong auction. In general, we refer to problems including the
exposure problem and the multiple copies problem as the “composability problem,” be-
cause they relate to issues with composing strategies across the boundaries of multiple
mechanisms [14].

Combinatorial auctions (CAs) [18] can be used to solve the exposure problem by
auctioning many different goods simultaneously, allowing bidders to submit desired
bundles as their bids (e.g., Alice may submit that she wants both PB “AND” J).
However, there are a number of reasons to doubt that CAs can extend to address fully
the problem of composability. First, the computational requirements for deriving solu-
tions to combinatorial auctions is worst-case exponential in the number of bids (unless
P = NP). In an eBay environment, the presence of millions of different goods (with
an exponentially larger number of possible bundles of goods) makes the design of a
single mechanism impractical. Second, CAs do not resolve temporal issues, assuming
instead that all agents are present at the same time. Third, CAs assume an unrealistic
market scope, with one market-maker able to control and bring together all participants
into a single market.

Retail stores have customers that face similar strategic problems as the composabil-
ity problem, and they have devised different policies to alleviate the problems that their
customers face. Return policies alleviate the exposure problem by allowing customers to
return goods at the purchase price. Price matching alleviates the multiple copies prob-
lem by allowing agents to receive from sellers after product purchase the difference
between the price paid for a good and a lower price found elsewhere else for the same
good. These two retail policies provide the basis for the scheme proposed in this paper.
In particular, we propose an options-based infrastructure to address the composability
problem.

To participate in the options scheme, a seller must agree to sell an option for her
good, which will ultimately lead to either a sale of the good, or (if the option is not
exercised) going back to the market and offering another option on the same good. The
process by which a seller sells options and leaves/returns to market can be made easier
via a proxy, whereby a seller may tell a proxy her patience and good for sale, after
which the proxy could then sell an option for that good at auction, observe the status
of the sold option, and resell another option if the initial option is not exercised and the
seller’s patience has yet to expire.

Buyers can collect portfolios of options before deciding which to exercise. We pro-
vide buyers with mandatory proxy agents, that carefully control the number of outstand-
ing options that each buyer can hold, and yet still follow one of the dominant bidding
strategies that an agent could follow if there was no proxy in the system. A buyer reports
her value and patience to a proxy agent upon arrival, and then agrees to let her proxy: a)
bid in auctions to acquire options; b) exercise options to maximize reported utility once
the buyer’s patience is expired. The proxy agents are essential to prevent a buyer from
obtaining options on which they have no intention of exercising. The options-based
protocol makes truthful and immediate revelation to a proxy a dominant strategy for
buyers, whatever the future auction dynamics.
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A benefit for sellers as demonstrated through simulation is that the options-based
protocol maintains a market even with buyers with complementary values for goods.
In comparison, we show that a traditional market can fail, because it quickly becomes
difficult for buyers to participate in the market without becoming exposed to partial
bundles and losing money. Thus, the options-based scheme has appeal to both buyers
and sellers.

1.1 Related Work

The composability problem was previously observed in Wellman & Wurman [20], in
the context of a discussion about the boundaries that must inevitably exist between
mechanisms. This theme was continued by Parkes [14] and Ng et al. [13] in the con-
text of strategyproof computing, in which the goal is to promote the deployment of
strategyproof mechanisms within an open and shared infrastructure. The problem has
often been identified in the context of simultaneous ascending price auctions, where it
is termed the exposure problem [4].

Previous work to address the problem has considered two different directions. First,
one can change the mechanism to define an expressive bidding language and incentive-
compatibility. This is the approach taken in the work on combinatorial auctions (see
Rothkopf et al. [18]). Second, one can attempt to provide agents with smarter bidding
strategies. This is the approach taken in the work of Boutilier et al. [2], Byde et al. [3],
Anthony & Jennings [1], and Reeves et al. [7]. Unfortunately, it seems hard to design
artificial agents with equilibrium bidding strategies, even for a simple simultaneous
ascending price auction.

Iwasaki et al. [10] have considered options in the context of a single, monolithic,
auction design to help bidding agents with marginal-increasing values avoid exposure
in a multi-unit homogeneous item auction problem. Sandholm & Lesser [19] have con-
sidered options in the form of leveled commitment contracts for facilitating multi-way
recontracting in a completely decentralized market place. Rothkopf & Engelbrecht-
Wiggans [17] discuss the advantages associated with the use of options.

Recent work of Porter et al. [16] has considered auctions with uncertainty in an
agent’s ability to successfully complete a task. As in our work, there is uncertainty
for a seller, in their setting due to whether or not a task will be performed. The chief
difference is that bidders in their model know their fault probabilities, and the authors
can design a mechanism around the revelation of this information.

Finally, a recent direction taken in computational mechanism design is that of online
mechanisms [15] and online auctions [11,9], in which agents can dynamically arrive
and depart across time. We leverage a price-based characterization in Hajiaghayi et
al. [9] to provide a dominant-strategy equilibrium for buyers within our options-based
protocol, creating a decentralized, truthful, option-based implementation of an online
combinatorial auction.

2 The Composability Problem

To illustrate the composability problem, consider the following simple example in
which a bidder does not have a dominant strategy equilibrium even though the indi-
vidual auctions in the world are strategyproof.
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Example 1. Alice values acquiring PB before Wednesday for $10. Bob will hold a
Vickrey auction for PB on Monday, and then again on Tuesday. In which auction(s)
should Alice participate? How much should Alice bid in each auction?

Clearly, Alice no longer has the simple strategy that an individual Vickrey auction
offers. By participating in the Monday auction, Alice might win and so would forgo
bidding in the Tuesday auction. However, the Tuesday auction may yield a better price.
But if Alice decides to skip the Monday auction and only participate in the Tuesday
auction, she may not win the Tuesday auction when she could have won the Monday
auction, or may have been better off participating in the Monday auction and securing
a lower price than the Tuesday auction. Alice has no dominant bidding strategy.

Example 2. Alice values PB and J at $10. Bob holds a Vickrey auction for PB on
Monday. Charlie holds a Vickrey auction for J on Tuesday. How much should Alice
bid in each auction?

Again, Alice has no dominant bidding strategy. If Alice wins the PB for $y, it is in
Alice’s best interest to bid $10 in the second auction, as winning the J derives a value of
$10 for Alice while losing the auction for J garners Alice no value. However, if Alice
loses the second auction, she will have a net surplus of −$y, having spent money on
PB but receiving no benefit from it. Even if Alice wins the J , it is possible that Alice
will have to spend as much as $(10 + y) to obtain the set, and so again may lose as
much as $y in surplus.

2.1 The Model

Consider a world with goods, G, buyers B and sellers S. Buyer i ∈ B has a value
vi(L) ≥ 0 for each subset of goods L ⊆ G. Let V denote the domain of agent valuations.
Let T = {1, 2, . . .} denote time periods. Each buyer has an arrival time, ai ∈ T , and
departure time di ∈ T . (Sometimes we refer to the patience of a buyer, which is simply
di − ai.) Let Di ⊆ G denote the goods of interest to agent i, defined as

Di = {k : ∃L ⊂ G s.t. vi(L ∪ k) > vi(L)} (1)

These are the goods that, when taken with some combination of other goods, have
non-zero value to the agent. Buyers are indifferent between receiving a bundle of goods
at any time before and up to her departure time. Each seller, j ∈ S, sells a single item
kj ∈ G.1 All individual auctions in our model will therefore be for a single item. Seller
j has an arrival time, aj ∈ T , and a departure time dj ∈ T , when they will leave the
system if no agent has yet obtained the right to purchase their good.

Agents arrive or leave at the end of each period, but multiple auctions can be se-
quenced within a period. Let At denote this sequence of auctions in period t, each one
associated with a single seller. From buyer i’s perspective, let Ai denote the sequence
of auctions that occur during the time in which buyer i is in the market. For example, if
buyer i arrives in period 1 and departs in period 3, then Ai = (A1, A2, A3).

1 This is the main limitation in our current model, but a good first-order approximation to eBay
style markets.
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We require that each individual auction is strategyproof (SP). Following Parkes [14]
we term this local strategyproofness, to emphasize that it does not imply that a buyer
has a dominant strategy when bidding across multiple such auctions. The utility to a
buyer, given goods L and price p, is defined as ui(L, p) = vi(L) − p. An individual
auction can be defined in terms of an allocation rule, x(b) and a payment rule p(b),
given bids b = (b1, . . . , bN). Bid bi reports a value bi(L) for each bundle of goods L
in the auction, and need not be truthful. In particular, agent i receives xi(b) ⊆ G goods
and makes payment pi(b) ∈ R.

Definition 1 (locally strategyproof). An auction A, defined as (x, p), is (locally) strat-
egyproof when its bidding language is expressive given valuations V, and given the
goods available in the auction, and when truthful bidding is a dominant-strategy for an
agent that can only bid in this one auction.

Formally, truthful bidding, bi = vi, is a dominant bidding strategy when vi(xi(vi,
b−i)) − pi(vi, b−i) ≥ vi(xi(v̂i, b−i)) − pi(v̂i, b−i), for all bids b−i from other agents,
and for all v̂i 	= vi. For instance, a single-item Vickrey auction is locally-SP for all
agents that will bid only in that auction.

When facing a sequence of auctions, a bidding strategy, bi for buyer i defines the
bid that the agent will make in each auction, and can be contingent on: i) her own value;
ii) her beliefs about other agents; iii) the outcomes and feedback from earlier auctions.

Definition 2 (The composability problem). The composability problem exists for an
agent facing a sequence of auctions Ai, when each auction in Ai is locally-SP, but the
agent does not have a dominant bidding strategy across the sequence of auctions.

In fact, the composability problem exists more often than not! In what follows, we
assume that all goods in an agent’s valuation function are available in Ai, and that each
auction is locally-SP. All proofs are omitted in the interest of space. First, consider a
single-minded buyer, and let (Bi, wi) denote that the buyer demands bundle Bi at price
wi. Refer to auction j ∈ Ai as an interesting auction when the good kj ∈ Bi.

Proposition 1. The composability problem exists for a single-minded buyer whenever
there are two or more interesting auctions.

Proof omitted for space. The effect of multiple auctions is that the agent must antic-
ipate the level of competition, and prices, in future auctions when deciding how to bid.
For instance, an agent that wants a single item and faces a sequence of Vickrey auctions
does not have a dominant bidding strategy, but would prefer to bid in the auction with
the lowest second price.

Next, we can consider an agent that demands multiple disjoint bundles Bim =
{Bi1, Bi2, . . . , BiM}, with an additive value wim for each bundle.

Proposition 2. An agent with additive values across bundles faces the composability
problem whenever there is at least one bundle Bim for which the composability problem
exists.

Proof omitted for space. We can also consider an agent with a general valuation
that cannot be expressed as an additive value across disjoint bundles, which precludes
a single-minded agent.
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Proposition 3. An agent i with a general valuation faces the composability problem
whenever it faces two or more interesting auctions.

Proof omitted for space. Here, there must exist bundles that are either substitutes or
complements. If the bundles are substitutes, an agent faces the problem of determining
which bundle to pursue (analogous to the problem an agent faces when the same single
item is sold at multiple auctions). If the bundles are complements, an agent can face the
exposure problem (analogous to when a single bundle contains multiple items).

3 The Opportunity to Use Options

An option is a right to acquire a good at a certain price, called the exercise price. For in-
stance, Alice may obtain from Bob the right to buy PB from him at an exercise price of
$3. What makes options unique is that the right to purchase a good at an exercise price
does not imply the obligation to purchase a good at an exercise price. Therefore, when
Alice obtains an option from Bob, Bob is not guaranteed that Alice will actually exer-
cise the option at the exercise price and obtain the good. This flexibility makes options
useful in addressing the composability problem. Buyers can put together a collection of
options on goods, and then decide whether to exercise each option.

Options are typically sold, obtained at a price called the option price. However, op-
tions obtained at a non-zero option price can not generally support a simple dominant
bidding strategy, as an agent must compute the expected value of an option [6] to justify
the cost. This computation requires a model of the future, which in our setting requires
a model of the bidding strategies and the values of other bidders. This is the very rea-
soning that we are trying to avoid by introducing options! Instead, we consider costless
options, where the option price is zero. This will require some care.

The basic problem arises because agents are always (weakly) better off with an op-
tion than without an option, whatever its exercise price, because an agent can always
choose for free not to exercise an option won. Therefore, an agent would be interested
in obtaining a costless option at any exercise price (including infinity), subsequently
choosing to exercise the option only if doing so would result in a gain of surplus. How-
ever, multiple bidders pursuing options with no intention of exercising them could cause
market efficiency to unravel. We address this issue through mandatory proxy agents,
which intermediate between buyers and the market.

4 Auctions for Options

In our scheme, sellers run an auction for costless options on goods, and buyers bid
through mandatory proxy agents. These proxy agents are critical to addressing the po-
tential for an inefficient allocation of options through hoarding. Proxy agents, coupled
with auctions for options, make it a buyer’s dominant strategy to truthfully reveal her
valuation and patience. Proxies follow a dominant bidding strategy for a buyer (by bid-
ding at a value high enough that no higher bid could make the agent strictly better off),
but restrict a buyer from pursuing options on which it is indifferent, such as a second
option for a good when only one instance of the good is desired, or an option with an
exercise price that could never be exercised for positive surplus.
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We now define the two main elements of our market:

Seller Auctions. Each seller j sells a costless option in a Vickrey auction. The option is
issued to the highest bidder, with an exercise price equal to the second-highest bid, and
is set to expire at the end of the buyer’s patience. Sellers also agree, by joining the mar-
ket, to allow the proxy representing a winning buyer to adjust downwards the exercise
price if the proxy discovers that it could have achieved a better price by waiting to bid
in a later auction for the same good (i.e., sellers agree to price match their competitors).
Sellers can run additional auctions if the options are returned.

Proxy Agents. Each buyer i must submit to a proxy an expressive language bid, v̂i,
reporting values for desired bundles. Each buyer also must submit a departure period,
d̂i, to the proxy. The proxy computes the maximal value for each item k desired by
i as vmax

i (k) = maxL⊇k v̂i(L).2 The proxy bids this price in any auction for item k,
until it holds an option on this item. At that point, the proxy tracks future auctions on
that item, determines what the world would look like if it had delayed its entry into the
market until that later auction, and will reduce the exercise price of the option it has
if it discovers that it could have secured a lower price by waiting to bid in that later
auction.3 The proxy determines this information by asking each future auction to report
the identities (can be pseudonymous) of the winner and second-highest winner, together
with their bid prices. The identities are necessary because they are used by the agent
when creating its view of the world had it decided to delay its entry.4 Finally, at the end
of the buyer’s reported patience d̂i, the proxy exercises options to maximize reported
value v̂i, solving maxL v̂i(L) −

∑
k∈L popt(k), where popt(k) is the option’s exercise

price, and popt(k) = ∞ if the proxy does not hold an option. All other options are
returned. No options are exercised when no combination of options are priced below a
buyer’s reported value.

The proxy agent forces a link between the valuation function v̂i used to acquire op-
tions and the valuation v̂i used to exercise options. Without this, agents could

2 While sellers of the same item type k′ may not have different reserve prices for their goods
(due to potential conflicts in being able to price match), sellers may agree (or be required) to
have a universal reserve price for each item type, rp(k′). In such a scenario, bidding agents can
incorporate this information into their bids for multi-item bundles because it provides a tighter

lower-bound on the price; specifically, vmax
i (k) = maxL⊇k

(
v̂i(L) − ∑

k′∈L,k′ �=k rp(k′)
)

.
3 However, the proxy does not at any point acquire a second option for the good. Rather, it

retains the single option it has been holding, but reduces its exercise price to the later price.
4 In particular, the proxy maintains a candidate agent, cand t

k, for each item k on which it holds
an option. Agent cand t

k is the agent still present in the market that is currently not allocated
an option for k, but would have been by now had the proxy delayed its entry. There may be no
such candidate agent if the displaced winner leaves the market without winning in a subsequent
auction, at which point the state of the market looking forward is unaffected by i winning its
option. Initially, cand t

k is set to the highest outside bidder in the auction in which proxy i wins
an option for k. In subsequent auctions for k: if cand t

k wins, the exercise price for the option
held by i is adjusted to the minimal of its current value and the second-highest price in this
new auction, and the second-highest bidder in this new auction becoming the new candidate;
else, the proxy’s price is adjusted to the minimal of its current price and the highest bid price
in this new auction.
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indifferently acquire options with exercise prices too high to ever be exercised. The
proxy agent also ensures that no buyer can hold more than one option on each good,
and can hold options on no goods outside its demand set. Without this, agents could in-
differently obtain options that they have no intention of exercising. These two properties
help to provide a well-functioning market.

Example 3. Alice desires PB and J for $30. Bob desires PB for $5. Charlie desires J
for $10. All agents have a patience of 2 days. On day one, a J auction is held, where
Alice’s proxy bids $30 and Charlie’s bids $10. Alice wins an option to purchase the J
for $10. On day two, a PB auction is held, where Alice’s proxy bids $30 and Bob’s
bids $5. Alice wins an option to purchase the PB for $5. At the end of the second day,
Alice’s proxy holds an option to buy PB for $5 and an option to buy J for $10, and so
exercises both options, spending a total of $15 to acquire her entire desired bundle.

Example 4. Alice desires PB for $20. Bob desires PB for $10. Charlie desires PB
for $5. All agents have a patience of 2 days. On day one, an auction is held for Peanut
Butter where each agents’ proxy bids their value, and Alice’s proxy wins an option to
buy PB for $10, and Alice’s proxy notes that Alice prevented Bob from winning the
option it now holds. On day two, another auction for PB is held where only Bob and
Charlie’s proxies bid. Bob’s proxy wins an option to buy PB for $5. Alice’s proxy looks
at its notes and observes that had Alice delayed her entry until now, Bob would not be
bidding. Therefore, Alice would have won today’s auction at Charlie’s bid price of $5,
and Alice’s proxy adjusts Alice’s option price down to $5. At the end of the second day,
both Alice and Bob hold options to buy PB for $5, and so both proxies exercise their
options, each spending $5.

Example 5. Alice desires a red hat for $20 “XOR” a blue hat for $10 (i.e., Alice’s value
is $20 for a red hat, $10 for a blue hat, and $20 for both). Bob desires a red had for $15.
Charlie desires a blue hat for $30. On day one, a red hat auction is held where Alice’s
proxy bids $20 and Bob’s proxy bids $15, resulting in Alice winning an option for the
red hat with an exercise price of $15. On day two, a blue hat auction is held where
Alice’s proxy bids $10 and Charlie’s proxy bids $30, resulting in Charlie winning an
option for the blue hat with an exercise price of $10. At the end of day two, Alice’s
proxy exercises her red hat option and Charlie’s proxy exercises his blue hat option.

4.1 Truthful Bidding to Proxy Agent

What remains to be shown is that it is a dominant strategy for the buyer to truthfully
reveal her value and arrival and departure time to her proxy agent. The proof builds on
the price-based characterization of time-strategyproof auctions in Hajiaghayi et al. [9].

Lemma 1. An online unit-demand auction is time and value strategyproof when:

– it constructs a price function for the agent over time that is independent of the type
reported by the agent,

– it allocates the good to the agent at the minimal price during period [ai, di] in the
market, in a period no earlier than this minimal price, and only when the agent’s
value is higher than this minimal price.
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Theorem 1. It is a dominant strategy for a buyer to truthfully reveal her valuation
function and patience to her proxy agent in the options-based market.

Proof. (sketch) The options scheme constructs an agent-independent price schedule,
pt

i(k), for each item k (in period t), defined as the highest bid received among those
agents not holding an option at time t, not including i herself and not including any
agents that would have already won options had i never entered the system. The proxy
agent holds an option for item k at time t at the minimal price from âi to t, whenever this
price is less than the maximal value the agent could have for the item (given possible
future prices). Overstating the value on a bundle can lead to the proxy holding an option
on some item, k, at some price greater than it would ever want to pay. Understating the
value can lead to the proxy missing a useful option on some item, k, and will not reduce
the price otherwise. Strategies that misstate arrival and departure are not useful because
reporting a later arrival or earlier departure can forfeit opportunities, while reporting a
later departure, d̂i > di, is not useful because the agent will not receive its goods until
after di. Thus, there is no useful manipulation of the final options on individual items,
and finally the proxy makes a purchasing decision by looking at prices on options and
exercising those that maximize reported utility.

5 Experiments

Up to this point we have focused solely on buyers. However, sellers can also benefit
because the options-based scheme fixes the market failure that exists when buyers have
complex values but face a sequence of auctions. The experimental results in this section
demonstrate that there are many scenarios in which the average buyer surplus in a mar-
ket without options is negative. In such a world, buyers would not enter the market to
begin with (such a decision is not individually-rational) and there would be no market
formation.

We simulate a simple market to better understand the economic effect of the options
scheme, for both buyers and sellers. We construct values for buyers according to a
quadratic method [12], which is parameterized with (M, γ). Each buyer receives value
on M bundles, and each bundle contains γ distinct goods. The value of one bundle,
Bim for buyer i, is determined by first choosing γ (distinct) items uniformly at random
and assigning each item k a value vk ∼ U [0, 1]. The value on the bundle is defined
as wim =

∑
k∈Bim

vk +
∑

k′∈Bim,k′ �=k vkvk′ . Each seller sells a single item, chosen
uniformly at random from the set of all goods. We choose to model an identical reserve
price for all goods and for all sellers, which is set to rp(k) = 0.5 for each good k unless
stated otherwise.5

Buyer patience is set to 50, while seller patience is set to 100. We vary the buyer
entry-rate and seller entry-rate to model different levels of supply and demand. We
compare the options-based market with a market in which there is a sequence of Vickrey
auctions for traditional goods. To model sell-side auctions in each round we choose to
run f t auctions in each period t. Upon arrival, sellers wait in a queue for their auction

5 Even though all sellers use the same reserve price, we assume that the buyers do not know this,
and do not pursue the alternate bidding strategy introduced in Footnote 2.
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to be scheduled, on a first-come first-served basis. The rate, f t, is adjusted to keep the
wait time, defined as the time that a seller needs to wait to have her auction scheduled,
below 5 periods.6 In the options world, a seller returns to the end of the queue if there
are no bidders in her auction, or if the winner returns her option. In the non-options
world, a seller only returns to the queue if she fails to sell her item.

Finally, we need a model of buyer strategies. In the options world, we assume that
each buyer reports her true value to her proxy immediately upon arrival. In the non-
options world, we need to adopt a bidding strategy for buyers, to provide a meaning-
ful comparison with the performance of the options world. Ideally we would adopt an
equilibrium bidding strategy, but this analysis is not available for such a complex game.
Instead, we adopt a “sunk-aware” bidding strategy, following the ideas in Reeves et al.
[7]. At any point in time an agent has purchased goods Lt, for price

∑
k∈Lt p(k), where

p(k) was the price paid in the Vickrey auction for good k. Consider some item k′ /∈ Lt.
The agent estimates her value for k′ as

v̂t
i(k

′) = max
L|k′∈L

⎡⎣vi(L) − α
∑
k∈Lt

p(k) −
∑

k∈L,k/∈Lt,k �=k′
p̂t

β(k)

⎤⎦ (2)

where p̂t
β(k) is defined as the average price for item k in the last β > 1 auctions for

k (we assume the agent has access to this information).7 In the event of an auction for
item k′, the agent then bids this estimated value, v̂t

i(k
′).

Parameter α ∈ [0, 1] determines how sunk-cost aware the bidder will act. With
α = 0 the agent ignores the sunk cost and continues to bid aggressively. With α = 1
the agent considers the cost of items already purchased, as though it is deciding over
again whether to buy those items and the new items. Thus, for higher α the agent is more
conservative, and bids less aggressively. We model buyers in the non-options world as
leaving the market as soon as they have purchased a bundle for which they have positive
value, or at time di (whichever occurs first). The sunk-cost parameter α was selected
so as to maximize buyer performance in the market for each (M, γ) and each level of
buyer entry-rate. Buyer surplus is measured as the average value-normalized surplus
upon exit from the market, with value-normalized surplus for a buyer that purchases
bundle Bim at price p defined as (vim − p)/vim, for true value vim. Note that this can
go negative, when a buyer pays more than her value for a bundle. We normalize in this
way to remove dependencies on absolute values of goods in our empiric analysis. In
the non-options world, when a buyer can fail to put together a complete bundle, we
substitute −p/V , where V = maxL vi(L), i.e. the value of the most-preferred bun-
dle. Seller surplus is measured as the ratio of total revenue generated by all sellers
divided by the total value of goods allocated to buyers. Losers are the percentage of
buyers that leave the market with negative surplus. In some markets without options
buyers can lose money, even when bidding conservatively. In this case, we also calcu-
late the adjusted-seller surplus, by factoring out any revenue that sellers were achiev-

6 In practice, we set f t = �Nt

5 �, where N t is the number of sellers in the queue in period t.
7 β was set to 25 in experimentation.
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Fig. 1. Buyer and seller surplus vs. buyer entry rate, for different valuations parameterized with
(M, γ). We also plot the percentage of buyers that are losers. Subplots (a)—(c) hold the seller
entry rate fixed, whereas the seller entry rate in (d) is scaled with buyer entry rate at a 2:1 ratio.

ing from buyers that were losing money (which we would not expect in a sustainable
equilibrium).8

Figure 1 illustrates buyer and seller surplus against an increasing buyer entry-rate,
with each subplot dedicated to a different structure (M, γ) for buyer valuations. We con-
sider values of (M, γ) ∈ {(1, 1), (2, 2), (4, 4)} in subplots (a), (b) and (c) respectively,
with the seller entry-rate set to 3, 6 and 12 in each scenario (this increases supply in
line with increased buyer demand as the number of items M demanded in each bundle
increases). Figure 1 (a) demonstrates that the options and non-options world produce

8 This adjustment is deemed conservative, with a more realistic revenue for sellers in these
scenarios expected to be lower. If the negative surplus bidders had never entered the market,
not only would their income be lost to sellers, but also the prices paid by those people who
remained would be lower due to the decreased competition.
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Fig. 2. Buyer and seller surplus, for different valuations parameterized with (M, γ). Subplot (a)
shows the effects of increasing the number of items in the bundles in a valuation. Subplot (b)
shows the effects of varying the reserve price.

very similar results when the population has the most simple of valuations, with seller
surplus increasing and buyer surplus decreasing as demand increases. Similar results
were experimentally confirmed for all (M, γ) = {(2, 1), (3, 1), (4, 1), (5, 1)}.

In Figure 1 (b) and (c) the non-options world “breaks” when demand gets too high
because the composability problem becomes more challenging. The average buyer in-
curs negative surplus and one would reasonably expect that buyers would not enter this
market in the first place. On the other hand, buyer surplus in the options world remains
positive, indicating that buyers would continue to enter the market. This suggests the
existence of scenarios in which introducing options can create new markets. Further
evidence for market breakdown in the non-options world can be found by considering
the Losers rates. Figure 1 (c) shows that the Losers rates is near 0.5 when there is high
demand, indicating that nearly half of the agents who are entering the market are losing
surplus upon exit.

In Figure 1 (d), we consider (M, γ) = (3, 2), and scale the seller entry-rate continu-
ously as we scale the buyer entry-rate, keeping the seller entry at twice the buyer entry.
Whereas scaling the world degrades the buyer surplus in the non-options world to the
point of being negative, seller surplus in the options world is steady and accompanied
by positive buyer surplus.

Figure 2 (a) fixes M = 2 and increases the number of items in each bundle. We
scale the buyer entry-rate from 16 to 8 to 5 to 4, while the seller entry-rate is fixed at 16,
to keep supply and demand in the same proportion. The exposure problem is present
in this scenario, and indeed we see a significant drop in buyer surplus and a rise in the
percentage of buyers with negative surplus in the non-options world. Figure 2 (b) illus-
trates the effect of changing the reserve price on all items. Buyer entry-rate is 3, seller
entry-rate is 9, and buyers demand 3 bundles, each with 3 items. A higher reserve price
in the non-options world drives buyer surplus negative, and results in market failure. On
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the other hand, sellers in the options world are able to raise reserve prices to increase
their surplus, and buyers can still manage to obtain positive surplus from the market
even when reserve prices are set very high. Noteworthy, although the seller surplus is
increasing in Figure 1, one should appreciate that this is a relative metric. In fact, we
observe that the total seller surplus tends to decrease in the options world as buyer
entry-rate grows (even though the normalized surplus remains quite flat). Less buyers
complete their desired bundles and less buyers eventually exercise their options. Of
course, we believe this is preferable to the complete market failure in the non-options
world. However, while markets continue to form with options, trades are more infre-
quent as buy-side competition increases— which suggests that it would be interesting
to explore additional methods, such as a prequalification stage, the use of stronger re-
serve prices, or the “throttling” of buyer entry-rate and pooling into separate markets.
We reserve these topics for future study.

6 Conclusion

We introduced an options-based auction protocol to address the composability problem
that exists when buyers with complex values must bid in sequences of simple auctions.
Our approach combines costless options with proxy agents, which acquire, maintain,
and exercise options on the agent’s behalf and best interest. Simple trading agents have
dominant bidding strategies in our options-based market, even though the markets re-
main fundamentally disintermediated. We believe that options-based markets may pro-
vide an interesting new class of market designs for eBay-like electronic markets.

Future work should aim to better situate this work within the context of the theory
of strategyproof online auctions. Future work may also address and resolve the strategic
problems facing sellers in this work. While it is not a dominant strategy for sellers to
try and keep prices on their goods artificially high (as doing so may prevent options
from being exercised if the prices maintained are at a prohibitively high level), it is true
that straightforward truthful behavior may not always be in the best interest of sellers in
the current model. Furthermore, an investigation of the role of false-name behavior [21]
should also yield interesting results. While buyers do not want to engage in false-name
behavior as multiple buyers, and sellers do not wish to engage in false-name behavior as
multiple sellers, we believe there are manipulations for buyers pretending to be sellers
and for sellers pretending to be buyers.

Additionally, future work on the empirical aspects of this project should aim to uti-
lize better benchmarks when analyzing the model, including the use of real data. In par-
ticular, there are three areas where real data could be particularly helpful to this model.
First, we believe there is ample opportunity for further exploration as to modeling the
arrival of sellers and timing of auctions in this setting, perhaps using data from eBay as
a foundation. Second, the high rates of buyers that are losing surplus in our simulation
of buyers in the non-options model when demand is high is cause to believe that agents
may follow a different bidding strategy than the one assumed here. Real world data can
be of great assistance in helping to empirically determine what those strategies might
be. Third, real world data can also help in developing accurate valuation models for
some set of niche goods in an existing market.
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Abstract. Reputation mechanisms offer an efficient way of building the
necessary level of trust in electronic markets. In the absence of indepen-
dent verification authorities that can reveal the true outcome of a trans-
action, market designers have to ensure that it is in the best interest of
the trading agents to report the behavior in transactions truthfully. As
opposed to side-payment schemes that correlate a present report with
future reports submitted about the same agent, we present a mechanism
we have called “CONFESS”, that discovers (in equilibrium) the true
outcome of a transaction by analyzing the two reports coming from the
agents involved in the exchange. For two long-run rational agents, we
show that it is possible to design such a mechanism that makes cooper-
ation a stable equilibrium.

1 Introduction

The availability of ubiquitous communication through the Internet is driving
the migration of business transactions from direct contact between people to
electronically mediated interactions. People interact electronically either through
human-computer interfaces or even through programs representing humans, so-
called agents. In either case, no physical interactions among entities occur and
the systems are much more susceptible to fraud and deception.

Traditional methods to avoid cheating, involving strong cryptography and
Trusted Third Parties (TTP’s) that overlook every transaction, are very costly
and sometimes even impossible to implement due to the complexity and hetero-
geneity of the environment. Moreover, network communities often have a strong
desire of being independent of any authorities, as illustrated by the successful
P2P systems.

Reputation mechanisms offer a novel and efficient way of ensuring the nec-
essary level of trust in electronic markets. They are based on the observation
that agent strategies change when we consider that interactions are repeated:
the other party will remember past cheating, and changes its terms of business
accordingly in the future. In this case, the expected future gains due to future
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transactions in which the agent has a higher reputation can offset the loss in-
curred by not cheating in the present transaction. This effect can be amplified
considerably if such reputation information is shared among a large population
and thus multiplies the expected future gains made accessible by honest behavior.

Theoretic research on reputation mechanisms started with the seminal papers
of Kreps, Milgrom, Wilson and Roberts [10,11,12] who explained how a small
amount of incomplete information is enough to generate the reputation effect,
(i.e. the preference of agents to develop a reputation for a certain type) in the
finitely repeated Prisoners’ Dilemma game and Selten’s Chain-Store game [15].

Fudenberg and Levine [6] and Schmidt [14] continue on the same idea by
deriving lower bounds on the equilibrium payoff received by the reputable agent
in two classes of games in which the reputation effect can occur.

A number of computational trust mechanisms have been developed based
on both direct (i.e. interaction-derived) and indirect (i.e. reported by peers)
reputation information [1,2,16]. This class of mechanisms, however intuitive, are
ad-hoc, do not provide rational participation incentives, and impose restrictions
on the acceptable behavior of the agents.

In [4] Dellarocas presents an efficient binary reputation mechanism that en-
courages a cooperative equilibrium in an environment of purely opportunistic
buyers and sellers. The mechanism is centralized, it works for single-value trans-
actions, and is robust (within certain limits) against mistakes made by reporters.

One major challenge associated with designing reputation mechanisms is to
ensure that truthful reports are gathered about the actual outcome of the trans-
action. In a typical trading interaction, e.g. an exchange between a seller (he)
and a buyer (she), the buyer is required to first pay and then wait for the pur-
chased good to be shipped to the intended destination. While the payment of the
buyer can be easily verified with the authority intermediating the transaction
(e.g. the credit card company), it is very difficult to verify that the seller has
indeed shipped the promised good. We start from a typical assumption about
online environments: the outcome of one transaction (i.e. the seller has shipped
or not the good) is only known to the parties involved. Any reputation mecha-
nism will therefore have information that is distorted by the strategic interests
of the reporters.

Most real situations do not make it rational for an agent to report the truth.
The private information of a buyer for example, about the trustworthiness of a
seller is often regarded as an asset which should not be freely shared. Paying
for the buyer’s reputation report could overcome this inconvenient, however, no
guarantee can be offered that the information provided is true. For example, a
true positive report might create inconveniences for the reporting buyer because
of decreased future availability of that particular seller. Moreover, in a compet-
itive environment, a false negative report about a seller slightly increases the
buyer’s own reputation with regards to the other agents.

The problem of incentive compatibility can be addressed by paying for a
reputation report, such that the payment is conditioned on the correlation with
future reports (assumed to be true) about the same seller. [13] and [8] describe
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such schemes that make truth revelation a Nash equilibrium. A problem with
these schemes however, is that they require certain constraints on the behavior of
the sellers and on the beliefs of the reporting buyers: i.e. the signals observed by
the buyers about the seller’s behavior are independently identically distributed,
and the set of seller types to which buyers assign positive probability is countable
and contains at least 2 elements.

In this paper we address the problem of honest feedback elicitation in a set-
ting in which sellers and buyers are assumed to be rational (i.e. maximize their
monetary payoff) and both buyers and sellers have a persistent presence in the
market. In Section 2 we prove that persistent presence is a critical assumption
for the existence of an incentive-compatible reputation mechanism. Afterwards,
we introduce an incentive compatible reputation mechanism and make an analy-
sis of its equilibria. Finally, Section 3 presents some open issues and Section 4
concludes our work.

2 Truthful Feedback

We consider an environment in which the following assumptions hold:

– A rational seller interacts repeatedly with several rational buyers by trading
one good of value vi in each round i. The values vi ∈ (v, v) are randomly
distributed according to the probability distribution function φ 1.

– All transactions generate a fixed profit equal to (ρB + ρS)vi, where ρSvi is
the profit of the seller and ρBvi is the profit of the corresponding buyer.
ρB, ρS < 1.

– All buyers are completely trustworthy: i.e. Each buyer first pays the seller
and then waits for the seller to ship the good. The seller may defect by not
shipping the promised good, and the buyer perfectly perceives the action of
the seller.

– There is no independent verification authority in the market, i.e. the behavior
of the seller in round i is known only to the seller himself and to the buyer
with which he traded in that round.

– The seller cannot refuse the interaction with a specific buyer, and can trade
with several buyers in parallel. A buyer can however end the interaction with
the seller and choose to buy the goods from a completely trusted seller (e.g.
a brick and mortar shop) for an extra cost representing a percentage (θ) of
the value of the item bought. Once a buyer decides to terminate a business
relationship with the seller, she will never trade again in this market. The
seller, however, can always find other buyers to trade with.

– The buyer and the seller discount future revenues by δB and δS respectively.
The discount factors also reflect the probability with which the agents are
going to participate to the next transaction. 0 < δS , δB < 1, and δS >> δB

1 Following the same argumentation proposed in [3], this model is valid for settings
where the act of accumulating inventory is independent from that of (re)selling it:
e.g. a highly dynamic used car dealership.
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modeling the fact that the seller is likely to have a longer presence in the
market than the buyer.

– The buyer and seller interact in a market (possibly a different one for each
transaction) capable of charging listing fees and participation taxes.

– At the end of every transaction, both the seller and the buyer are asked to
submit a binary report about the seller’s behavior: a positive report, R+,
signals cooperation while a negative report, R−, signals defection.

We also assume that in our environment there is a semantically well defined,
efficient Reputation Mechanism (RM). Reputation is semantically well defined
when buyers have exact rules for aggregating feedback into reputation informa-
tion and for making trust decisions based on that reputation information. These
rules determine sellers to assign a value to a reputation report (R+ or R−),
reflecting the influence of that report on future revenues. RM is efficient if the
values associated by sellers to reputation reports are such that in any transac-
tion the seller prefers to cooperate rather than defect. If V (R+, v) and V (R−, v)
are the values associated by the seller to the positive respectively the negative
reputation report generated after a transaction of value v, we have: V(R+, v) +
Payoff(cooperate,v) > V(R−, v) + Payoff(defect,v)2 . A simple escrow service or
Dellarocas’ Goodwill Hunting Mechanism [3] satisfy these properties.

When perfect feedback (i.e. true and accurate) is available, a well-defined,
efficient RM is enough to make rational sellers cooperate. Unfortunately, perfect
feedback cannot be assumed. In the absence of independent verification means,
we can only rely on the subjective reports submitted by the agents involved in
the transaction; reports which are obviously biased by the strategic interests of
the agents.

In the rest of this section we will achieve three things. First, we will draw
some limits of feasibility for incentive compatible RMs. We will show that no
RM can be incentive compatible when the interaction between the seller and
any particular buyer can be modeled by a perfect information finitely repeated
game. Second, we describe an incentive-compatible RM that exists within the
feasibility bounds. Third, we analyze the equilibria of the described RM and
provide an example.

2.1 Limits of Feasibility

From a game theoretic point of view, a complete information game models a
situation in which the players are rational, their rationality is common knowledge
and their payoffs are also common knowledge.

Reputation mechanisms cannot exist when the agents have complete infor-
mation and the seller is present for a finite number of transactions in the market
[10]. It is therefore common practice for RM designers to model sellers by infinite
horizon players. However, no restrictions have been imposed so far on the model
of the buyers’ behavior. This is the problem we address in this section by showing
2 As an abuse of notation, we will sometimes use V (R+, v) = V (R+) and ignore the

fact that the value of a reputation report also depends on the value of the good.
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that RMs cannot be incentive compatible when agents have complete informa-
tion and any particular buyer is present for a finite number of transactions in
the market.

For the environment earlier described, we can prove that:

Theorem 1. No incentive compatible RM exists in an environment in which
the interaction between the seller and a particular buyer can be modeled by a
one-shot complete information game.

Proof. Consider a single-shot buyer Bi, who trades in round i with the seller
having one of the two types: S1 and S2. The seller type S1 cooperates with all
buyers, the seller type S2 cooperates with all buyers but Bi, whom he cheats.
Let us assume that there exists an incentive compatible RM. RM will therefore
be able to differentiate between the two seller types.

For the rest of the buyers, the behavior types S1 and S2 are indistinguishable.
Because the behavior of the seller in round i is observed only by Bi (assumption
presented in Section 2), the rest of the buyers do not have any information about
the truthfulness of buyer Bi’s report. Hence, any attempts from the rest of the
buyers to bias Bi into telling the truth, even by monetary compensation on the
side, would be futile since the “biaser” would have no way of confirming the
information of the “biasee”. On the other hand, a seller of type S2 can make any
positive (no matter how small) side-payment to buyer Bi in order to convince
her to submit a false positive report instead of the true negative one, and Bi,
being single-shot, will accept that payment. Therefore RM cannot be incentive-
compatible. ��

As a direct consequence of Theorem 1, a RM can be incentive-compatible
only if it is incentive compatible for every isolated interaction between the seller
and a particular buyer. The truth of this statement is evident if we consider that
an incentive compatible RM should always be able to distinguish between two
seller types that are undistinguishable for all the buyers except one.

As an immediate extension of Theorem 1 we have:

Theorem 2. No incentive compatible RM exists in an environment in which
the interaction between the seller and a particular buyer can be modeled by a
complete information finitely repeated game.

Proof. Let us denote by N the number of times a buyer trades with the seller,
and let us denote by round it, t = 1 . . .N , the round in which buyer Bi trades
for the tth time with the seller. In round iN the buyer is a one shot buyer, and
therefore the result of Theorem 1 applies. Because the outcome of round iN (in
terms of truth reporting) is common knowledge to both the seller and the buyer,
it will not influence the outcome of round iN−1, which thus strategically becomes
the last interaction. By backward induction, it is not possible to obtain truthful
reports in any of the N interactions. ��

Fortunately, it still is possible to have an incentive compatible reputation
mechanism if (1) either the interaction between the seller and a particular buyer
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can be modeled by an infinitely repeated game, or (2) agents do not have com-
plete information. In the remains of this section we will describe a reputation
mechanism that supports an incentive compatible equilibrium when agents have
complete information. Moreover, in the same spirit as [11], [6] and [14] we show
how uncertainty regarding the buyer’s type can give birth to the reputation effect
and reduce the set of possible equilibria to a more appealing subset.

2.2 The “CONFESS” Mechanism

Every round i, a seller offers for sale a good of value vi. The market charges the
seller a listing fee εS , and advertises the good to the buyer. The buyer pays a
participation tax εB, to the market, and the price vi to the seller. If the seller
cooperates, he ships the good directly to the buyer; otherwise the seller keeps
the payment for himself and does not ship the good. After a certain deadline, the
transaction is considered as over, and the market starts collecting information
about the behavior of the seller. The seller is first required to submit a report. If
the seller admits having defected, a negative report (R−) is submitted to the RM,
the listing fees εS and εB are returned to the rightful owners, and the protocol
is terminated. If, however, the seller claims to have cooperated, the buyer is also
asked to provide a report. At this moment, the buyer can report cooperation,
report defection, or she can report defection and terminate the interaction with
the seller.

If the buyer reports cooperation, a positive reputation report (R+) is sub-
mitted to the RM, and the listing fees εS and εB are returned. If the buyer
reports defection, both players will be punished as one of them is surely lying:
a negative report (R−) is submitted to RM, and the listing fees εS and εB are
confiscated. Finally, if the buyer decides to terminate the interaction, a negative
report (R−) is submitted to RM, and the fees εS and εB are confiscated.

From a game theoretic point of view, the above described protocol can be
modeled by the extensive-form game G = (N, (Ai), (�i), T ), shown in
Figure 1. N = {S, B} is the set of players, the seller and the buyer respectively,
AS = {CcS , CdS , DcS , DdS} is the action set of the seller, AB = {cB, dB} is the
action set of the buyer, �S is the preference relation of the seller over the set of
possible outcomes (gS is the corresponding payoff function of the seller), �B is
the preference relation of the buyer over the set of possible outcomes (gB is the
corresponding payoff function of the buyer), and T is the player function, or the
“turn” function which prescribes which player should make the next move after
every possible game history.

The outcome for the buyer is indicated as a single real value representing
the buyer’s payoff in the current round. The outcome for the seller is indicated
as a tuple (X ; P ), where X ∈ {R+, R−} represents the filed reputation report
(positive or negative), and P ∈ R is the monetary gain obtained by the seller
in the current transaction. The payoff of the seller is defined by simply adding
the monetary gain P with the value of the reputation report: i.e. gS(X ; P ) =
V (X) + P .
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Fig. 1. Game G modeling the one-round interaction protocol

The repeated transaction between the seller and one buyer can be modeled
by an infinite repetition of the stage game G, denoted G∞, in which the overall
payoff for player i is given by the average discounted sum:

Vi = (1 − δi)
∞∑

τ=0

δτ
i gτ

i ;

where δi denotes the discount factor of player i, and gτ
i is the payoff obtained

by player i in round τ .

2.3 Equilibrium Analysis

For discounted infinitely repeated games with complete information, the Folk
Theorem [7] guarantees that every enforceable outcome (i.e. feasible and in-
dividually rational) can be obtained by a subgame perfect equilibrium (SPE)
strategy profile when the discount factors are big enough. The results of this
theorem do not apply directly to the game G∞ because in every round t we
allow the buyer to quit the game.

When the buyer terminates an interaction with a seller (chooses out in round
t), she obtains a continuation payoff equal to:

V̂ t+1
B = (1 − δB)

∞∑
τ=t+1

δτ−t−1
B vτ (ρB − θ);

If we denote by ṽ the average value of a transaction, the expected value of V̂ t+1
B

is:
E[V̂ t+1

B ] = ṽ(ρB − θ);
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Any SPE strategy profile must give the buyer at least V̂ t+1
B after every round

t (otherwise the buyer can profitably deviate to out in round t). The minimum
continuation payoff of the buyer is therefore:

V t
B = (1 − δB)(−vt − εB) + δBV̂ t+1

B ; (1)

A payoff profile v̂ = (v̂S , v̂B) dominates another payoff profile v = (vS , vB) if
it is better for at least one of the players and not worse for any of the players:
i.e. there is i ∈ {S, B} such that v̂i > vi and for all j ∈ {S, B} \ i, v̂j ≥ vj .

We restrict our attention to SPE strategies of G∞ which are not dominated.
A SPE strategy s is not dominated if there is no other SPE strategy ŝ such that
the the payoff profile generated by ŝ dominates the payoff profile generated by
s in G∞. The intuition behind this assumption is that no player will choose to
play a SPE strategy as long as there is another SPE strategy which can bring
him a higher payoff while not decreasing the payoff of the opponent.

The above restriction limits the set of SPE strategies to the ones generating
an equilibrium path containing a mixture of the action profiles (CcS , cB) and
(DcS , cB).

Lemma 1. All not dominated SPE strategies prescribe only the action profiles
(CcS , cB) and (DcS , cB) on the equilibrium path in G∞.

Proof. See Jurca and Faltings, [9], Lemma 1. ��

Let s be a mixed strategy profile such that with probability p the players play
(DcS , cB) and with probability (1 − p) the players play (CcS , cB). The expected
continuation payoff of the buyer is:

E[V t+1
B ] = E

[
(1 − δB)

∞∑
τ=t

δτ−t
B [p(−vτ ) + (1 − p)ρBvτ ]

]
;

= ṽ(ρB − p − ρBp); (2)

When playing in round t, the buyer knows which of the action profiles (CcS , cB)
or (DcS , cB) are prescribed by the strategy s, and therefore the continuation
payoff of the buyer is:

V t
B|(CcS ,cB) = (1 − δB)ρBvt + δBV t+1

B ;
V t

B|(DcS,cB) = (1 − δB)(−vt) + δBV t+1
B ;

(3)

depending on what s prescribes for round t. Both V t
B|(CcS,cB) and V t

B |(DcS,cB)

have to be greater or equal to V t
B. The maximum value of p is therefore:

p ≤ p =
(1 − δB)εB + δB ṽθ

δB ṽ(1 + ρB)
; (4)

The upper bound on p limits the maximum attainable payoff, V S , of the
seller in G∞:

V
t
S = (1 − δS)

∞∑
τ=t

δτ−t[pvτ + (1 − p)ρSvτ + V (R+)];
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which has an expected value: E[V
t

S ] = V (R+) + pṽ(1 − ρS) + ṽρS . By replacing
(4) we obtain:

V
t
S = V (R+) + ṽρS + ṽ(1 − ρS)

(1 − δB)εB + δB ṽθ

δB ṽ(1 + ρB)
;

For any p ∈ [0, p] the strategy s can be made a SPE of G∞ by adding
minimax threats (see Fudenberg and Maskin [7] Therem 1 for how the strategy
can be built). Let us observe that when p = 0 no false feedback is recorded by
the RM, and every transaction is cooperative. “CONFESS” has therefore one
incentive-compatible, efficient SPE point. Unfortunately, this equilibrium is not
unique, and we can only guarantee that the maximum percentage of false reports
accepted by our mechanism is p.

Incomplete Information. Following the ideas from [10], [6] and [14] we can
use incomplete information in order to limit the set of SPE strategies to a more
desirable subset (i.e. consisting of those strategies which generate mainly true
reputation reports and outcomes as close as possible to the socially efficient one).

Let us consider a perturbation of the complete information repeated game
G∞ such that in period 0 (before the first round of the game is played) the
type of the buyer is drawn by nature out of the set Ω = {ω0, ω

∗} according to
the probability measure μ. The buyer’s payoff now additionally depends on her
type, such that the ω0 type buyer (or the normal type buyer) has the payoffs
presented in Figure 1, while the ω∗ type buyer (or the commitment type buyer)
always prefers to report the truth. We say that in the perturbed game G∞(μ)
the seller has incomplete information because he is not sure about the true type
of the buyer.

We prove that in G∞(μ) there is a finite upper bound, kS , on the number of
times a rational seller is willing to play DcS , given that he always observes the
commitment strategy being played by the buyer.

The intuition behind this result is the following. The seller’s best response to
the commitment type buyer is to always cooperate and report cooperation, i.e.
(CcS), which gives the commitment type buyer her maximum attainable payoff
in G∞(μ), corresponding to the socially efficient outcome. The seller however
would be better off by playing against the normal buyer. As we have seen above,
against the normal type buyer, the seller can get more than the cooperative
outcome by randomizing between the (CcS , cB) and (DcS , cB) action profiles.

A normal type buyer can be distinguished from a commitment type buyer
only if the seller plays DcS . In this situation, the normal buyer prefers to play
cB, while the commitment buyer prefers to play dB . The normal buyer could
however simulate the strategy of a commitment buyer in order to obtain the
payoff of the latter (i.e. the cooperative outcome).

Because the cooperative strategy involves a loss for the seller (i.e. the po-
tential loss of not being able to get the higher payoff that could be obtained
against the normal buyer) the seller should not become “easily” convinced that
he is playing against a commitment type buyer. The question is therefore, how
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long should the seller try to determine the true type of the buyer. Because every
outcome (DcS , cB) (i.e. the seller tests the type of the buyer and the buyer plays
the commitment strategy) generates a loss for the seller, and because the seller
cannot infinitely wait for future payoffs (the seller’s discount factor is less than 1)
it follows that at some point, if the seller always observes the commitment strat-
egy being played by the buyer, he must give up trying to test the true type of
the buyer, and accept playing a best response to the commitment type buyer.

Theorem 3. If:

1. the seller has incomplete information in G∞,
2. the seller assigns positive probability to the prior beliefs that the buyer is a

“commitment” type and a “normal” type. i.e. μ(ω0) > 0, μ∗
0 = μ(ω∗) > 0

and μ(ω0) + μ(ω∗) = 1;

Then there is a finite upper bound kS on the number of times the seller plays
DcS in G∞:

kS =

⎡⎢⎢⎢ ln(μ∗
0)

ln
(

(1−δS)v(1−ρS)+δSΦ
(1−δS)[v(1−ρS)+ε+εS ]+δSΦ

)
⎤⎥⎥⎥

where δB , δS are the discount factors of the buyer and seller, ρS , ρB are their
profit margins, εB, εS are the lying fines imposed by the mechanism, v is the
maximum value of a transaction, ṽ is the expected value of a transaction, θ
is the additional fraction of the price a buyer has to pay when buying from
completely trustworthy sellers, ε = gS(R+, ρSvi) − gS(R−, vi) is the loss of the
seller caused by receiving a negative reputation report instead of a positive one,
and:

Φ = ṽ(1 − ρS)
(1 − δB)εB + δB ṽθ

δB ṽ(1 + ρB)
;

Proof. See Jurca and Faltings, [9], Theorem 1. ��

The lower bound kS restricts the set of possible equilibrium payoffs of the
normal type buyer in G∞(μ). If a rational buyer mimics the commitment type
buyer, she obtains in the worst case V ′t

B; the outcome (DcS , cB) in the first kS

rounds, followed by an infinite number of cooperative outcomes.

V ′t
B = (1 − δB)

[
(−vt − εB) + δB

t+kS−1∑
τ=t+1

δτ−t−1
B (−vτ − εB)

+ δkS
B

∞∑
τ=t+kS

δτ−t−kS
B ρBvτ

]
;

Any equilibrium strategy in G∞(μ) must guarantee the normal type buyer at
least V ′t

B. Let us reconsider the strategy s from the perfect information game G∞
according to which the players play (DcS , cB) with probability p and (CcS , cB)
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with probability 1−p. By imposing that both V t
B |(CcS,cB) and V t

B |(DcS,cB) (Equa-
tion (3)) be greater or equal to V ′t

B, the maximum value of p is:

p ≤ p′ =
(1 − δB)εB + (δB − δkS

B )(ṽ + εB + ṽρB)
δB ṽ(1 + ρB)

; (5)

However, the constraints on p presented in Equation (4) remain valid, and there-
fore p ≤ min(p, p′).

Particular importance has the case in which kS = 1. p′ becomes:

p′ =
(1 − δB)εB

δB ṽ(1 + ρB)
; (6)

and as εB can be any positive value, p′ will in the limit approach 0. In this
situation, the reputation mechanism will receive false reputation reports with
vanishing probability.

The result of Theorem 3 has to be interpreted as a worst case scenario. In
real markets, sellers that already have a small predisposition to cooperate will
defect fewer times. Moreover, the mechanism is self enforcing, in the sense that
the more buyers act as commitment types, the higher will be the prior beliefs of
the sellers that buyers will report truthfully, and therefore the easier it will be
for the buyers to act as truthful reporters.

The following properties are also straightforward to derive as a direct conse-
quence of Theorem 3:

Property 1. The mechanism is bounded socially efficient.

Proof. Because of the lost exchange, outcome (DcS , cB) generates a cumulated
social loss of (ρS+ρB)vi every time it occurs. The perfect information equilibrium
involves a possibly infinite number of rounds in which (DcS , cB) is played. By
limiting the number of times the seller is playing action D, we also limit to a
finite number (i.e. kS) the rounds in which the exchange does not occur. The
social loss is therefore bounded above by kS(ρS + ρB)v. ��

Property 2. The mechanism is weakly budget balanced.

Proof. The net payment to the mechanism is non-negative as every time there is
a disagreement concerning the two reputation reports, the center gets εB+εS. By
introducing supplementary service fees, the mechanism can be easily transformed
into one that yields profit to the market. ��

Numerical Example. Let us consider the example of a hotel who charges for
a room a fixed price of v = 140 dollars a night. The profit margin of the hotel
is ρS = 0.95 while the profit margin of the client is ρB = 0.2. The customer
returns to the same hotel once a year with probability δB = 0.7, and after each
night spent in the hotel she is required to submit a binary reputation report
about whether or not the hotel has kept its promise (in terms of a Service Level
Agreement). The customer also has the option to go to another hotel which costs
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Fig. 2. Numerical Example

an additional 14 dollars a night (θ = 0.1). The hotel discounts future revenues
with δS = 0.95.

We assume that the reputation of the hotel directly affects its occupancy
(and future revenues) such that any time a hotel cheats and correctly receives a
negative reputation report, it looses (in terms of future revenues) ε = 25 dollars.
When the fines εS and εB equal to 1 respectively 20 dollars, Figure 2(a) plots the
value of the upper bound kS for different values of the prior probability μ∗

0. For
the same values of μ∗

0, Figure 2(b) plots the maximum value of the probability
with which “CONFESS” will accept false reputation reports. When μ∗

0 > 0.25
the hotel will cheat at most once on a customer, and the probability of receiving
a false reputation report is smaller than 0.3%.

3 Open Issues

Further benefits can be obtained if the buyers’ reputation as honest reporters
is shared in the market. A buyer that has once built a reputation for truthfully
reporting the seller’s behavior will benefit from cooperative trade during her
entire lifetime, without having to convince each seller separately. The upper
bound on the loss a buyer has to withstand in order to convince a seller that she
is a commitment type, becomes an upper bound on the total loss a buyer has to
withstand during her entire lifetime in the market. How to efficiently share the
reputation of buyers within the market remains an open issue.

Correlated with this idea is the observation that buyers that use our mecha-
nism are motivated to keep their identity. In generalized markets in which agents
are encouraged to play both roles (e.g. a peer-2-peer file sharing market in which
the fact that an agent acts only as ”seller” can be interpreted as a strong indi-
cation of ”double identity” with the intention of cheating) our mechanism also
solves the problem signaled in [5] related to the ease with which agents can
change their online identity. The price to pay for the new identity is the loss due
to building a reputation as a honest reporter when acting as a buyer.
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The mechanism can be criticized for being centralized. The market acts as a
central authority by collecting listing fees from the seller and the buyer, by asking
the reputation reports at the end of each transaction, and by reasoning about
the outcome of the transaction. However, as the mechanism does not require
any information to be transmitted from one round to another (the seller stores
the reputation of the buyer) we could have the same seller and buyer interact
in multiple markets (decentralized system) without having to rely on one single
centralized institution.

One direction of future research is to study the behavior of the above mech-
anism when there is two-sided incomplete information: i.e. the buyer is also
uncertain about the type of the seller. A seller type of particular importance
would be the ”greedy” seller type who always likes to keep the partner buyer to
her minimum continuation payoff. In this situation we expect to be able to find
an upper bound kB on the number of rounds in which a rational buyer would
be willing to test the true type of the seller. The condition kS < kB would im-
pose the constraints on the parameters of the system for which the reputation
effect will work in the favor of the buyer: i.e. the seller will give up first the
”psychological” war and revert to a cooperative equilibrium.

A somehow related problem is the robustness to mistakes, or imperfect mon-
itoring of the opponent’s actions. A seller’s defection by mistake in a situation
in which it was not rational for a seller to defect will be interpreted by the buyer
as evidence of the seller’s irrational behavior.

Last, but not least, we plan to adapt this truthful reporting mechanism for
reputation mechanism that affect the value of future transactions. For such mech-
anisms the repeated interaction between a buyer and seller is much more compli-
cated to model. A negative report submitted by a buyer at time t might lead to
more beneficial trade for that buyer in the future (since the negative reputation
report will attract a decrease in the price of future sold goods). Making it ratio-
nal for the buyer to submit the true report involves a detailed understanding of
the underlying reputation mechanism, the solution being most likely application
dependent.

4 Conclusions

In this paper we formally prove that no binary reputation mechanism can be
incentive compatible when the agents are rational, have game-theoretic complete
information and the trusting agent (i.e. the buyer) interacts a finite number of
times with the trusted agent (i.e. the seller). Moreover, we describe a truthful
feedback elicitation mechanism (“CONFESS”) for two long-run rational buyer
and seller and give an intuitive presentation of how incentive compatibility can
exist as an equilibrium. When the seller has incomplete information, the perfor-
mance of our mechanism is greatly improved and we have been able to derive
an upper bound on the percentage of false reports that are accepted by the
mechanism. The mechanism we have presented does not require the presence of
an independent verification authority, can be easily decentralized and accepts
transactions of different values.
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Generalized Knapsack Solvers for Multi-unit
Combinatorial Auctions: Analysis and Application

to Computational Resource Allocation
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Abstract. The problem of allocating discrete computational resources motivates
interest in general multi-unit combinatorial exchanges. This paper considers the
problem of computing optimal (surplus-maximizing) allocations, assuming unre-
stricted quasi-linear preferences. We present a solver whose pseudo-polynomial
time and memory requirements are linear in three of four natural measures of
problem size: number of agents, length of bids, and units of each resource. In
applications where the number of resource types is inherently a small constant,
e.g., computational resource allocation, such a solver offers advantages over more
elaborate approaches developed for high-dimensional problems.

We also describe the deep connection between auction winner determina-
tion problems and generalized knapsack problems, which has received remark-
ably little attention in the literature. This connection leads directly to pseudo-
polynomial solvers, informs solver benchmarking by exploiting extensive re-
search on hard knapsack problems, and allows E-Commerce research to leverage
a large and mature body of literature.

1 Introduction

Recent years have witnessed an explosion of interest in combinatorial auctions (CAs),
which permit agents to define utility over bundles of different types of goods. Although
CAs are applicable to a wide range of allocation problems, the U.S. Federal Communi-
cations Commission’s spectrum allocation problem largely motivated the 1990s surge
of CA research [1,2]. Special properties of spectrum auctions—particularly the restric-
tion that only a single unit of each type of good is available—received much attention in
E-commerce research literature. An important measure of problem size in a single-unit
CA is the number of good types, and for this measure the winner determination problem
(WDP) is NP-hard by reduction from the weighted set packing problem [3].

An unfortunate consequence of excessive attention to single-unit CAs has been ex-
cessive pessimism regarding efficient and exact winner determination in more general
problems. The few papers that have considered multi-unit CAs (MUCAs) report that
the WDP is NP hard when problem size is measured by number of good types [4, 5, 1].
Other natural measures, e.g., number of available units of each good, number of agents,
and the length of bids, receive far less attention.

This paper follows a very different trajectory from practical motivation to conclu-
sions regarding the computational complexity of CA WDPs. We begin with the problem
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of allocating resources in large computing centers. The number of resource types in this
problem is a small constant, whereas the number of units of each resource is large and
variable. The optimal allocation problem is a generalized multi-dimensional knapsack
problem (MDKP): allocating a bundle of goods to an agent reduces the pool of avail-
able goods, just as placing an item in a container with multiple capacity constraints
(e.g., weight, volume) reduces its remaining capacity along each dimension.

The deep connection between WDPs and KPs leads to pseudo-polynomial exact al-
gorithms for problems of fixed dimensionality. Very simple exact solvers exist whose
time and memory requirements are linear in the number of agents, length of bids,
and number of units of each resource. Such solvers are entirely practical for low-
dimensional problem instances (i.e., few resource types) and are an attractive default
solution method whenever their computational costs are not prohibitive. In all cases
they provide a well-understood baseline for comparison with more elaborate methods.

Straightforward MUCA WDP solvers inspired by the auction-knapsack connec-
tion invite more detailed, more balanced, and more nuanced analyses than are typ-
ically performed on complex heuristic solvers designed for high-dimensional prob-
lems. Knapsack-based WDP solvers furthermore support very general combinatorial
exchanges with essentially no restrictions on the expression of agent utility functions.
The connection between CA WDPs and generalized KPs allows us to retain much of
the flexibility and generality of integer programming [6] while exploiting the special
structure of KPs to obtain simple and efficient exact solvers. In special cases such as
single-good multi-unit auctions, textbook uni-dimensional KP solvers compare rather
well with specialized WDP algorithms. Finally, WDP benchmarks can draw upon ex-
tensive Operations Research literature on hard KP instances.

The boundaries of the present investigation are as follows: We consider only one-
shot sealed-bid auctions, an important subset of auction types in a comprehensive tax-
onomy [7]. We consider only discrete allocation (integral quantities of goods). Our
results apply to the allocator of proper economic mechanisms such as the Generalized
Vickrey Auction (GVA) [8] or Vickrey-Clarke-Groves (VCG) mechanisms [9], but we
do not consider incentive issues surrounding auctions. Finally, although a wide range
of approximation schemes for KPs have been proposed, we restrict attention to exact
methods. This is appropriate in light of recent results on the necessity of exact solvers
for incentive-compatible mechanisms [10,11,12,13]. A longer version of this paper [14]
includes material omitted due to space limitations.

The remainder of this paper is structured as follows: Section 2 motivates interest
in low-dimensional MUCAs with a discussion of resource allocation in large comput-
ing centers. Section 3 formulates our general allocation problem and explains its rela-
tion to auction winner determination. Section 4 presents a general solver for multi-unit
CAs with unrestricted preference expression and analyzes its computational complexity.
Section 4.2 discusses hard KP instances, Section 5 reviews related work, and Section 6
concludes with a discussion.

2 Motivation: Data Center Allocation

Large tightly-coupled computers remain popular for enterprise computing, and today
entire data centers comprising large numbers of loosely-coupled hosts are offered as
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commercial products [15]. Resource allocation in both contexts has several properties
that recommend auction-mediated negotiation, and knapsack-based optimal allocators
are ideal WDP solvers for these contexts.

The number of abstract resource types in computational allocation problems is
inherently a small constant, because only a few fundamental operations can be per-
formed on data: data can be manipulated, stored, and transported. Corresponding re-
source types—processing, storage, and bandwidth—often suffice in models of com-
putational resource allocation [16]. For reasons of fault isolation, security, and perfor-
mance isolation, most computing resources are allocated in integral quantities; exam-
ples include CPUs, switch ports, and logical devices (LDEVs) in consolidated storage
arrays. By contrast, the number of units of each resource is large and expands with user
needs.

Data centers are partitioned so that an application’s performance depends only upon
the resources it receives; in auction contexts this property is sometimes called “no exter-
nalities” [17]. Multi-tiered applications for large computing environments are horizon-
tally scalable by design, i.e., they exploit variable quantities of resources at each tier.
Application performance exhibits both complementarities and substitutabilities across
resource types. For example, one application may require minimal quantities of both
memory and bandwidth in order to perform acceptably; another may compensate for
lack of bandwidth by exploiting an additional CPU for data compression. The utility
that accrues to an application is a complex function of the bundle of resources it re-
ceives; this property recommends combinatorial auctions.

While the number of applications simultaneously sharing an enterprise computing
center may be large, the number of self-interested agents among whom resources are
allocated may be small. Agents might correspond to departments or projects within
a firm, or to firms within a consortium that jointly owns a data center. If the num-
ber of agents is so large that each agent’s potential influence on allocative outcomes
is negligible, competitive (i.e., non-strategic) behavior may be a reasonable norma-
tive assumption. However strategic behavior is to be expected if few agents are in-
volved. Incentive-compatible mechanisms (in which truth-telling is a dominant strategy
for agents) are therefore desirable, even for allocation within a hierarchical organiza-
tion [18]. Given that the incentive properties of GVA/VCG mechanisms sometimes re-
quire exact WDP solvers [10, 11, 12, 13], we prefer exact solvers to approximate ones
where possible.

Computational resource allocation can be formalized as a generalized knapsack
problem [19]; Section 3 describes a suitable formulation. Our straightforward solver,
presented in Section 4, is appropriate to the special properties of data-center allocation.
Its computational complexity is exponential in the number of resource types but is lin-
ear in the number of available units of each resource and in all other natural measures
of problem size. A simple implementation of the solver produces, as a side effect, a
table describing the aggregate utility of any subset of the data center’s resource pool,
thereby providing a wealth of information about the marginal value of various resource
types. This information might be useful for purposes other than allocation, e.g., capacity
planning.
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3 Problem Formulation

We are given R resource types and T agents. At most Nr indivisible units of resource
type r are available, r = 1, . . . ,R. Each agent’s utility function is represented by defining
utility over a list of resource bundles; the list may be arbitrarily long, and may therefore
may represent any utility function. If agent utility naturally takes a more compact form
than a list of (bundle, utility) pairs, the former may easily be translated into the latter.
The length of utility functions when defined explicitly over bundles is not prohibitive in
low-dimensional cases (i.e., where the number of resource types R is a small constant).

Our goal is to maximize aggregate utility by choosing exactly one bundle from each
list, subject to resource scarcity. Let Bt denote the number of bundles in agent t’s util-
ity function, and let qtb = (q1tb, . . . ,qRtb) and utb respectively denote the quantities of
resources in bundles and the utility of bundles, b = 1, . . . ,Bt . Binary decision variable
xtb = 1 if agent t receives the bth resource bundle on its list, zero otherwise. Formally,
our “multi-dimensional multiple-choice knapsack problem” (MDMCK) is the follow-
ing integer program:

maximize ∑T
t=1 ∑Bt

b=1 xtbutb (1)

subject to ∑Bt
b=1 xtb = 1 t = 1, . . . ,T (2)

∑T
t=1 ∑Bt

b=1 xtbqrtb ≤ Nr r = 1, . . . ,R (3)

The inequality in Equation 3 permits unallocated goods; to forbid them we simply re-
place it with equality. In the latter case we can express arbitrary disposal costs of un-
allocated goods via an additional agent utility function. The solver of Section 4 takes a
different approach: it accepts an explicit disposal cost function as an input.

MDMCK includes classic knapsack problems as special cases [19]. Extensive liter-
ature exists on these special cases, but relatively little on MDMCK itself. Kellerer et al.
devote roughly three pages to MDMCK and identify approximate heuristic algorithms
dating back to 1997 [20]. They report that to the best of their knowledge no exact al-
gorithm for MDMCK has ever been published. In fact, Tennenholtz briefly sketched
an exact solver suitable for low-dimensional MDMCK instances, without analyzing its
complexity or connecting the WDP to generalized KPs [21].

Two-resource MDMCK admits simple graphical illustration (Figure 1). A bun-
dle/utility pair in a utility function is represented as a rectangle labeled with agent
ID (left). Utility functions are collections of such rectangles (center). The solution is
illustrated at right: a bundle is chosen from each utility function such that utility is
maximized while total resource usage does not exceed any capacity dimension.
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Fig. 1. 2-D MDMCK. Left: resource bundle. Center: utility functions. Right: optimal allocation.
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3.1 Application to Auctions

In an auction setting, we refer to an agent’s list of (qtb,utb) pairs as its bid. We shall
ignore the relationship between an agent’s reported and true utility functions except to
note that they may differ and that our allocator receives the former. The constraint of
Equation 3 ensures that each agent receives exactly one bundle defined by its bid. In
other words, we permit “XOR bids,” which in turn permit the expression of arbitrary
preferences [17].

The MDMCK formulation requires that each agent’s utility depends only on the
bundle of resources the agent itself receives (“no externalities” [17]). No other restric-
tions on agent preferences are inherent. For example, MDMCK allows goods to be
“bads,” i.e., free disposal is not required. Furthermore agent utility need not be “nor-
malized” in the sense that no change in goods owned implies no change in utility.

Some prior work on single-good-type/multi-unit auctions has restricted the form of
bids, e.g., demand must be monotonic in per-unit price [22] or atomic bids are forbid-
den [23]; monotonicity restrictions have also appeared in multi-good CA analyses [24].
In the single-good-type case, divisibility is required for existence of a uniform price that
maximizes surplus according to restricted-form bids (which might not represent actual
agent preferences). Uniform prices are sometimes desirable, e.g., for reasons of per-
ceived fairness. The real motivation for bid restrictions, however, has sometimes been
to facilitate efficient WDP algorithms [25].

Computational issues aside, the greater generality and flexibility of a MDMCK for-
mulation makes it attractive if uniform prices are not required. The components of re-
source vectors q and utilities u may assume both negative and positive values, allowing
agents to express willingness to engage in complex atomic (all-or-nothing) transac-
tions. Thus the MDMCK formulation supports very general combinatorial exchanges,
e.g., the dozen CA variants considered in Ref. [26].

3.2 Auction and KP Taxonomies

CA WDPs are often linked to set packing, even in the multi-unit case [5]. Connec-
tions with generalized knapsack problems, however, seem more natural and more
useful for several reasons. First, KPs are more widely known among nonspecialists,
e.g., implementors in industry; they are intuitive, memorable, and invite graphical
interpretation (Figure 1). KPs are also far more widely studied. Most importantly, KPs
admit pseudo-polynomial solution under restrictions that are sometimes acceptable
in practice. Whereas connections with set packing have led to the pessimistic
view that “CA WDPs are NP hard,” the knapsack connection encourages cautious
optimism.

Consider three aspects of sealed-bid auctions and their knapsack counterparts:

1. number of types of goods in an auction / dimensionality of a KP;
2. number of units of each good / capacity of KP container in each dimension; and
3. number of bundles in bids / the “multiple-choice” aspect of KP.

In each case the characteristic may be single or multiple, e.g., an auction may involve
multiple units of a single good type, or single units of multiple good types. Table 1
summarizes the seven meaningful combinations of these possibilities. When KP items
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Table 1. Auction types and winner-determination problems (S=single, M=multiple)

go
od

typ
es

un
its

bu
nd

les

common name / examples winner-determination problem

S S S first price find max
S M S double auctions, single-quantity bids 0-1 KP; subset-sum if #units ∝ utility
S M M double auctions, XOR bids multiple-choice KP (MCKP)
M S S “combinatorial auctions” weighted set packing (WSP) [3]
M S M single-unit CA, XOR bids convert to WSP via “dummy goods”
M M S multi-unit CA, single-bundle bids multi-dimensional KP (MDKP)
M M M multi-unit CA, XOR bids [4] MDMCK [19]

are partitioned into disjoint sets and we must choose exactly one item from each set, we
say that a “multiple-choice” constraint applies; this corresponds to an XOR constraint
across elements of a compound bid. The most general KP shown is MDMCK, which
corresponds to multi-unit CAs with arbitrary XOR bids (MMM in Table 1).

It is straightforward to convert an instance of the MSM problem to an MSS instance
by adding “dummy goods” to enforce multiple-choice/XOR constraints: introduce an
extra good type for each agent, one unit of which is included in each of the agent’s
bundles and of which exactly one unit is available [4]. MMM instances can be con-
verted to MMS instances in the same way. This transformation increases the dimen-
sionality of problem instances, which may increase computational burdens for some
solvers.

Several of the correspondences in Table 1 have been noted previously. Kothari et al.
mention in a footnote that their single-good multi-unit WDP is similar “in spirit” to
MCKP, citing a 1970s reference [22]. However they quickly dismiss the connection on
grounds that MCKP leads to an infeasible formulation. In fact, simple MCKP solvers
in modern texts scale rather well with problem size (see Section 5.2), and efficient spe-
cialized solvers are the subject of sophisticated recent research [27]. Holte observes that
Operations Researchers have long investigated MDKPs that are substantively identical
to multi-unit CA WDPs [28], contrary to claims in recent E-commerce literature that
MUCA WDPs were never before studied [4]. Years later, however, MUCA WDP re-
search that cites Holte does not mention the connection he made [29]. A very recent
text on KPs discusses Holte’s insight in considerable detail but does not make the con-
nection between MDMCK and multi-unit CAs with XOR bids; instead it suggests the
use of dummy goods to enforce XOR constraints for a MDKP solver [20]. Overall,
we find remarkably few references to knapsack problems in recent literature on auction
WDPs, and nothing approaching a comprehensive treatment of the relationship between
the two in the E-commerce literature. Section 5 considers in greater detail the state of
the E-commerce literature in this regard.

4 Dynamic Programming Solver

This section presents a simple dynamic programming (DP) algorithm for MDMCK; it
generalizes multi-dimensional and multiple-choice KP solvers [30, 20].
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Let N = (N1, . . . ,NR) denote the multi-dimensional “size” of our resource pool,
and let 0 denote the R-vector consisting entirely of zeros. We say that a ≥ b if every
component of vector a is not less than the corresponding component of b.

Given an integer t̂ and a resource pool size n, we define Ft̂(n) to be the optimal
value of our objective function (Equation 1) for the sub-instance of MDMCK involving
only agents 1, . . . , t̂ and a resource pool of size n. F0(n) defines the utility of unallo-
cated resources for feasible “leftovers” n ≥ 0 and defines utility as −∞ for infeasible
allocations. Similarly we define At̂(n) as the bundle assigned to agent t̂ by the optimal
assignment for the sub-instance defined by t̂ and n. F and A may be defined recursively:

Ft̂(n) =

⎧⎪⎨⎪⎩
−∞ t̂ = 0, ¬(n ≥ 0)
D(n) t̂ = 0, n ≥ 0

max
b∈Bt̂

{Ft̂−1(n− qt̂b)+ ut̂b} 1 ≤ t̂ ≤ T
(4)

At̂(n) = arg max
b∈Bt̂

{Ft̂−1(n − qt̂b)+ ut̂b} 1 ≤ t̂ ≤ T (5)

where Bt̂ = {1, . . . ,Bt̂} and D expresses the (dis)utility of unallocated resources. To
permit unallocated goods at no cost we simply set D = 0; to forbid unallocated goods we
set D = −∞. FT (N) is the value of an optimal solution, and the corresponding choices
of bundles may be recovered as AT (N), AT−1(N −qTAT (N)), etc.; conversion to decision
variables xtb of Equations 1 through 3 is trivial.

We may evaluate the dynamic program in at least two ways: by constructing tables
corresponding to F(·) and A(·) in bottom-up fashion, or by recursively evaluating FT (N)
and AT (N). The former strategy yields a full FT (n) table containing information about
the marginal utilities of every resource type for every resource pool size n : 0 ≤ n ≤
N; this may be useful for purposes other than allocation, e.g., capacity planning. A
disadvantage of the bottom-up approach is that it achieves worst-case performance on
all inputs. Top-down evaluation may save time on some inputs by evaluating F(·) and
A(·) for fewer (t̂,n) pairs, and may permit more space-efficient representation of the
tables than naı̈ve arrays. Top-down evaluation admits a variety of optimizations and
elaborations, including lower-bound heuristics and pruning via upper bounds; with such
embellishments it resembles branch-and-bound (B&B) search. A no-frills top-down C
implementation of our solver runs to several dozen lines of code, comparable to succinct
uni-dimensional KP solvers [31].

4.1 Computational Complexity

The worst-case time and memory complexity of a straightforward implementation of
the the dynamic program are easy to analyze. We assume a bottom-up implementation
that stores F(·) and A(·) values in ordinary arrays. We assume that the coefficients
describing a problem instance are integers from a bounded range, and without loss
of generality we assume that all coefficients are non-negative. (A natural expression
of a fully general two-sided exchange WDP might be an instance of MDMCK with
negative coefficients, but such an instance can be efficiently transformed to one with
non-negative coefficients in a simple pre-processing step without altering the optimal
values of decision variables.)
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The dynamic program requires storage proportional to T ∏R
r=1 Nr. Evaluating Equa-

tions 4 and 5 requires time proportional to R∑T
t=1(Bt ∏R

r=1 Nr) where the R term is due
to the R-dimensional vector subtraction in the recursive calls to F . If Nr = N for each
resource, and if each agent defines utility over B resource bundles, then the storage re-
quirement is O(T NR) and the time requirement is O(RT BNR). If each agent defines
utility over all NR possible resource bundles (the case of rational preferences) then the
time requirement becomes O(RT N2R).

The classic 0-1 and integer knapsack problems are NP-hard [32, 33]. MDMCK in-
cludes these as special cases, and therefore it too is NP-hard. However knapsack prob-
lems are not NP-hard in the strong sense, i.e., they admit pseudo-polynomial solution if
dimensionality is fixed. See Papadimitriou & Steiglitz for a good discussion of pseudo-
polynomial complexity analysis applied to classic KPs [33]. If we need not support
problem instances with enormous coefficients, pseudo-polynomial bounds are the most
natural and insightful description of algorithmic complexity. Restricting utb, qrtb, and
Nr to the length of modern machine words, e.g., 64 bits, is unlikely to be problematic
in practical allocation problems.

For classic uni-dimensional problems, branch-and-bound algorithms are often fa-
vored over DP except for hard problem instances, where DP usually performs bet-
ter [30, page 36]. For high-dimensional problems the computational costs of DP are
prohibitive and the best method may be general integer programming (IP). Modern IP
solvers support convenient and rapid solution of a wide range of WDPs [6] and compute
approximate solutions to large MDMCK instances very rapidly [19].

4.2 Hard Knapsack Problems

Real-world CA WDP instances are not available for solver benchmarking, so we must
rely on synthetic benchmarks. A thorough evaluation of any WDP solver should include
instances intended to mimic typical inputs, such as those generated by CATS [34], as
well as hard instances to expose worst-case behavior. The connection between WDPs
and KPs allows us to exploit many years of research on hard KP instances for WDP
solver evaluation.

There are two ways to construct hard instances of classic uni-dimensional knapsack
problems. The first is to make the coefficients enormous; Chvátal describes how large
they must be in order to foil a range of common solution methods [35]. We shall con-
tinue to assume that coefficients are bounded and therefore focus on the second method,
which involves the relationship between bundle size and utility.

The size/utility relationship is easy to visualize in the uni-dimensional case.
Figure 2, after Pisinger [36], illustrates four possibilities; Martello et al. and Kellerer
et al. describe others [37, 20]. Strongly-correlated instances are among the hardest
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for today’s best KP solvers and are the subject of ongoing research [38, 37]. An ex-
tended version of this paper describes how to construct generalized multi-dimensional
strongly-correlated instances [14].

It is interesting to note that early empirical evaluations of KP solvers focused exces-
sively on “easy” problem instances, specifically the uncorrelated and weakly-correlated
cases of Figure 2; only later did attention within the OR literature shift to characterizing
hard instances and using them in solver benchmarks [37]. A similar pattern is evident
in evaluations of WDP solvers many years later, as Andersson et al. have noted [6];
see also Section 5.2. It is reasonable to speculate that mis-steps in WDP benchmark-
ing might have been avoided if connections between WDPs and KPs had been more
prominent in E-commerce research.

5 Related Work

(This section has been reduced due to space limitations; see [14] for the full version.)
The literature on knapsack problems is vast and growing. An excellent text by Martello
& Toth [30] is now out of print, but a very recent book by Kellerer et al. provides
updated and expanded coverage, including multi-dimensional problems and MDMCK
itself [20]. Martello et al. review recent research on exact solutions for large hard in-
stances of 0-1 KP [37]. Pisinger summarizes the state of the art in uni-dimensional KP
research c. 1995 [36], much of which is directly applicable to subsequent research on
single-good-type/multi-unit WDPs [23, 22].

5.1 WDP-KP Connections

An extensive literature search revealed little mention of the connection between auction
WDPs and KPs and nothing approaching a comprehensive treatment. Recent surveys on
combinatorial auctions and auction theory [3, 2, 39, 1, 40, 26] do not discuss knapsack
problems. The string “knap” appears in exactly five papers among all past proceedings
of the ACM Conference on E-Commerce (EC). Two are unrelated to our interests, two
mention in passing a relationship between special cases of WDP and KPs [22, 5], and
one uses reduction from KP to prove NP-hardness [24]. Occasionally papers in other
fora note that single-good-type auction WDPs are KPs, usually to establish intractability
and sometimes to note the existence of pseudo-polynomial algorithms [41].

In several cases E-commerce research has missed opportunities to build upon rele-
vant prior work—and failed to acknowledge it—perhaps because the WDP-KP connec-
tion has been overlooked. For instance, the fact that multi-dimensional KPs do not ad-
mit fully-polynomial approximation, even in the two-dimensional case, has been known
since 1979 [20, p. 252]. Twenty years later, the question of whether CA WDPs admit
approximation was described as “open” [42, p. 10].

Queries to six literature search engines for “auction,” “knapsack,” and “auction
AND knapsack” yielded results summarized in Table 2. In all cases the conjunctive
query yielded far fewer hits than the two basic queries; none of the “auction AND
knapsack” papers contained a detailed or systematic treatment of the WDP-KP connec-
tion. A few papers mention in passing a deep relationship between WDPs and KPs and
a handful casually state that the connection is well known, without saying by whom;
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Table 2. Summary of keyword searches, December 2003 and January 2004

Source Total docs “auction” “knapsack” both
Springer Link ? 152 103 zero
IEEE Xplore 990,765 313 150 zero
ACM Digital Library 125,779 802 427 10
CiteSeer ? 1,686 922 12
Science Citation Index 33,117,604 2,379 989 zero
Elsevier Science Direct “over 4M” 5,143 2,084 11

see [14] for citations. Somewhat ironically, the only detailed discussion of the connec-
tion between combinatorial auction WDPs and generalized KPs of which we are aware
occurs in a very recent text written primarily by Operations Researchers with little in-
terest in E-commerce [20, pp. 478–482].

In summary, the WDP-KP relationship is neither noted nor exploited widely in E-
commerce research at the intersection of computer science and auction theory. The re-
mainder of this section reviews selected literature on multi-unit auction WDPs, showing
how the KP literature can enhance several of these contributions.

5.2 Multi-unit Auction WDPs

Kothari et al. consider single-good-type multi-unit auctions and introduce a fully-poly-
nomial algorithm to compute approximately surplus-maximizing allocations [22]. Bids
are restricted in several ways: they are divisible, the utility they express is monotonic in
per-unit price, and their length is bounded. This paper mentions in passing that its allo-
cation problem can be solved by a multiple-choice KP solver and that fully-polynomial
approximation algorithms exist for MCKP. However it offers no detailed comparison
with earlier approximate MCKP solvers or with simple exact algorithms.

A textbook DP algorithm for MCKP [30, page 78] applied to the single-good multi-
unit WDP supports a completely general two-sided exchange with unrestricted bids.
In the special case of a forward auction with N units for sale and T agents whose
bids define utility over all possible quantities 0, . . . ,N, the (pseudo-polynomial) time
and memory requirements of this very simple exact method are respectively O(T N2)
and O(TN). Similar computational properties apply to the special case of a reverse
auction; more sophisticated algorithms with improved asymptotic bounds exist [20].
The algorithm of Kothari et al. computes a (1 + ε) approximation for the restricted-
bid problem and requires O(T 3/ε) time. A detailed comparison with the textbook DP
solver would place the new contribution in better perspective and would illuminate
the tradeoffs between computational complexity and generality that are available to us.
Discussion of the need for fully-polynomial (vs. pseudo-polynomial) algorithms would
help to motivate the new method.

Bassamboo et al. consider online bid processing in single-good-type multi-unit auc-
tions with indivisible (all-or-nothing) single-quantity bids [43]. They describe a remark-
ably storage-efficient algorithm for maintaining a small set of potentially winning bids
prior to clearing; bids that cannot potentially win at the time they arrive are rejected, per-
mitting the bidder to adjust her bid if desired. These authors note that literature on online
knapsack problems exists, but does not precisely match the auction rules they consider.
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Tennenholtz notes that the multi-good-type/multi-unit WDP is “tractable” when the
number of types of goods is fixed, and describes a longest-paths dynamic programming
algorithm in the context of a two-good-type example [21]. It is not clear whether the
intended meaning is that polynomial or pseudo-polynomial solutions exist (the former
cannot be true, because this WDP includes NP-hard problems MCKP and 0-1 KP as
special cases). Neither knapsack problems nor their close relationship with longest-path
problems [44, p. 100] are mentioned, nor are time and memory complexity analyses
presented. A later version of the paper omits the DP algorithm entirely [45].

WDP solver research for multi-good-type/multi-unit CAs has emphasized heuristic
branch-and-bound algorithms [4, 5]. Such approaches are entirely reasonable, partic-
ularly for high-dimensional problems in which DP solvers are likely to be infeasible.
Comparisons with DP-based KP solvers could enhance B&B investigations by encour-
aging more detailed analyses of worst-case time and memory requirements in terms
of all measures of problem size. B&B research to date has emphasized the number
of good types, sometimes without detailed quantitative analysis of computational re-
quirements [4]. Furthermore, benchmarks for multi-unit CAs could draw upon exten-
sive research on hard KP instances. Empirical evaluations of MUCA WDP solvers to
date have employed similar input synthesis procedures [4, 5, 26], which produce multi-
dimensional variants of the uncorrelated and weakly correlated cases of Figure 2; for
uni-dimensional KPs, these are not hard instances.

Finally, awareness of the WDP-KP connection would support more succinct and
more precise descriptions of novel WDP algorithms. Leyton-Brown et al., for instance,
introduce a “polynomial” subroutine for pre-processing bids for a single good type
(“singletons”) [4,29]. In fact, this subroutine implements the classic pseudo-polynomial
DP algorithm for the NP-hard 0-1 knapsack problem.

6 Discussion

This paper has compared two very different trajectories of CA research, summarized
in Table 3. Motivated largely by FCC spectrum auctions, most CA research over the
past decade has taken the number of types of goods as a measure of problem size while
fixing the number of units of each good at 1. This paper begins with the problem of

Table 3. Trajectories of CA research

single-unit/high-dimensional multi-unit/low-dimensional

practical motivation spectrum auctions computational resource allocation

# good types variable, high low, fixed

# units/type fixed at 1 variable, high

WDP weighted set packing generalized knapsack problem

conventional wisdom “WDP is NP-hard,” rational linear solvers available,
preferences infeasible rational preferences okay

solver research heuristic B&B, restricted prefs exact DP, any preferences

OR leverage limited, late extensive, early



84 T. Kelly

computational resource allocation in modern data centers, which involves few types
of goods but many units of each. Whereas comparisons with set packing have led to
the conclusion that the WDP is intractable in the single-unit/high-dimensional case,
different natural measures of problem size lead us to conclude that the WDP admits
pseudo-polynomial solution in the multi-unit/low-dimensional case. Realization that
WDPs are special cases of MDMCK leads to a very general solver whose simplicity
invites thorough analysis.

By recognizing connections between knapsack problems and winner determination,
we bring a wealth of Operations Research knowledge to bear on problems central to
multi-agent resource allocation. This eliminates duplication of effort by allowing E-
commerce research to focus on typical WDP instances while leaving to the OR com-
munity the task of characterizing hard cases. It also allows WDP solver research to
focus on novel methods only when real-world instances offer optimization opportuni-
ties that are not exploited by general-purpose KP solvers.

Straightforward dynamic-programming KP solvers offer several attractive proper-
ties, including analytic tractability and simplicity of implementation. These in turn
reduce errors, which have been discovered in elaborate B&B solvers after publica-
tion [46]. If nothing else, DP provides a well-understood baseline for comparisons of
more sophisticated methods and highlights tradeoffs between algorithmic intricacy and
computational efficiency. Furthermore for hard instances of low-dimensional problems,
DP may simply outperform alternatives. In the special case of single-good/multi-unit
auctions, textbook KP solvers provide exact solutions for unrestricted inputs and scale
remarkably well with problem size; at the very least, they merit detailed comparison
with approximation algorithms for restricted problems.

We have shown that a practical multi-agent allocation problem involving computa-
tional resources lends itself readily to formulation as a generalized knapsack problem,
and that for this low-dimensional problem an extremely simple DP solver scales to in-
stances of non-trivial size. In future work we intend to compare the performance of DP,
B&B, and integer program solvers on a range of synthetic MDMCK instances and, if
possible, to characterize analytically the instances best suited to each solution method.
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Abstract. In many settings, bidding agents for auctions do not know their pref-
erences a priori. Instead, they must actively determine them through deliberation
(e.g., information processing or information gathering). Agents are faced not only
with the problem of deciding how to reveal their preferences to the mechanism but
also how to deliberate in order to determine their preferences. For such settings,
we have introduced the deliberation equilibrium as the game-theoretic solution
concept where the agents’ deliberation actions are modeled as part of their strate-
gies. In this paper, we lay out mechanism design principles for such deliberative
agents.

We also derive the first impossibility results for such settings - specifically for
private-value auctions where the agents’ utility functions are quasilinear, but the
agents can only determine their valuations through deliberation. We propose a set
of intuitive properties which are desirable in mechanisms used among delibera-
tive agents. First, mechanisms should be non-deliberative: the mechanism should
not be solving the deliberation problems for the agents. Secondly, mechanisms
should be deliberation-proof: agents should not deliberate on others’ valuations
in equilibrium. Third, the mechanism should be non-deceiving: agents do not
strategically misrepresent. Finally, the mechanism should be sensitive: the agents’
actions should affect the outcome. We show that no direct-revelation mechanism
satisfies these four properties. Moving beyond direct-revelation mechanisms, we
show that no value-based mechanism (that is, mechanism where the agents are
only asked to report valuations - either partially or fully determined ones) satis-
fies these four properties.

1 Introduction

Game theory, and mechanism design in particular, have long been successfully used
in economics and have recently drawn a lot of research interest from computer scien-
tists (e.g., [7] [8]). In most of this work it is assumed that the participants, or agents,
know their preferences and the goal of the mechanism is to extract this information to
a sufficient extent, and select an outcome such that desirable properties are achieved.
However, there are many settings where agents do not know their preferences a priori.
Instead they may, for example, have to solve computationally complex optimization
problems, query databases, or perform complicated searches in order to determine the
worth of an outcome. We call the actions taken to determine preferences deliberation.

If there are no restrictions placed on the deliberation capabilities of agents, they
could optimally determine their preferences and act as fully rational agents. However,
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in many settings there are costs associated with deliberation. Agents are not able to
optimally determine their preferences, but instead must trade off quality of valuations
against deliberation cost. Decision making under costly deliberation resources is chal-
lenging even in single-agent settings. Having to interact with other agents complicates
the problem further. Agents must take into account the other agents’ actions in deter-
mining both how to act in the mechanism and also how to use deliberation resources.

We have proposed explicitly including the deliberation actions of agents into their
strategies, and then analyzing games for deliberation equilibria which are fixed points
in the space of strategy profiles from this enlarged strategy space [4] [5] . Using this
approach, we have studied common auction mechanisms such as the first-price auc-
tion, Vickrey auction, ascending auction, descending auction, and generalized Vickrey
auction. We discovered the existence of interesting strategic behavior. In each auction
mechanism studied, there existed instances where, in equilibrium, agents would use
their deliberation resources to determine other agents’ valuations of the item(s) being
auctioned. We coined this phenomenon strategic deliberation.

In this paper, we build on this body of work. Instead of looking at the properties
of auctions that were designed for fully rational agents, we ask the question: “Is it
possible to design auctions that have desirable properties for such deliberative agents?”
We propose a set of weak, intuitive properties that are desirable for auctions designed
for such agents. In particular, we propose that auctions should not solve the valuation
problems for the agents, that strategic deliberation should not occur in equilibrium, that
agents should not have incentive to misreport, and that the agents’ actions affect the
outcome. We show that no direct-revelation mechanism satisfies these four properties.
Moving beyond direct-revelation mechanisms, we show that no value-based mechanism
(that is, mechanism where the agents are only asked to report valuations - either partially
or fully determined ones) satisfies these four properties.

The rest of the paper is as follows. We first provide an example application where
our approach is needed (Section 2). We then given an overview of pertinent mechanism
design concepts, and describe the model for computationally-limited agents (Sections 3
and 4). We show that there is a parallel to the revelation principle for our setting, but
argue that the direct mechanism produced has highly impractical properties. We then
propose a set of auction properties which we believe are important when the auction is to
be used among deliberative agents. Our main results show that it is impossible to design
a direct-revelation mechanism that satisfies those desirable properties, and furthermore,
it is impossible to design any value-based mechanism that satisfies them (Section 5).

2 An Example Application

To make the presentation more concrete, we now discuss an example domain where our
methods are needed.

Consider the example presented in Figure 1. An agent is trying to determine how
much it values a specific product. In order to help determine its value, the agent queries
a product review database to gather information about the product. Each query costs
some fixed an amount, so an agent is faced with the decision of how much information
to gather given the cost to acquire it. It may also be in the agent’s best interest to use
some of its deliberation resources (i.e. money to pay for queries) to (partially) determine
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Product Review Database

Agent

Query

Product

"How many reviewers liked 
the product?"

"How many  reviewers
did not like the product?"

"Is there an equivalent product 
with better reviews?"

Fig. 1. Agents may need to gather information in order to determine their value for a certain
item. In this figure, an agent gathers information about a product by querying a product review
database. Each query returns an answer which is used by the agent to update its value for the
product. However, each query costs some fixed amount, and so the agent must decide how much
information it needs about the product, given the cost of gathering it.

the values that the other agents in the auction have for the product. By doing some initial
deliberating on a competitor’s problem, an agent can gather information that may be
useful in formulating its own deliberating and bidding strategies.

3 Mechanism Design for Rational Agents

In this section we present an overview of pertinent mechanism design concepts. We
assume that the reader has a basic background in game theory. The mechanism design
problem is to implement an optimal system-wide solution to a decentralized optimiza-
tion problem with self-interested agents with private information about their preferences
for different outcomes. One of the most exciting applications of mechanism design has
been in the area of auction design.

We assume that there is a set of agents, I , |I| = n. Each agent, i, has a type,
θi ∈ Θi, which represents the private information of the agent that is relevant to the
agent’s decision making. In particular, an agent’s type determines its preferences over
different outcomes. We use the notation ui(o, θi) to denote the utility of agent i with
type θi for outcome o ∈ O (O is the space of possible outcomes). As mentioned in
the first paragraph, the goal of mechanism design is to implement some system-wide
solution. This is defined in terms of a social choice function.

Definition 1 (Social Choice Function). A social choice function is a function
f : Θ1 × . . . × Θn �→ O, such that, for each possible profile of agents’ types θ =
(θ1, . . . , θn) assigns an outcome f(θ) ∈ O.

The mechanism design problem is to implement a set of “rules” so that the solution
to the social choice function is implemented despite agents’ acting in their own self-
interest.

Definition 2 (Mechanism). A mechanism M = (S1, . . . , Sn, g(·)) defines the set of
strategies Si available to each agent and an outcome rule g : S1 × . . . × Sn :�→ O,
such that g(s) is the outcome implemented by the mechanism for strategy profile s =
(s1, . . . , sn).
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A mechanism implements a social choice function f(·) if there is an equilibrium of
the game induced by the mechanism which results in the same outcomes as f(·) for
every profile of types, θ.

Definition 3 (Implementation). A mechanism M = (S1, . . . , Sn, g(·)) implements
social choice function f(·) if there is an equilibrium strategy profile s∗ = (s∗1, . . . , s

∗
n)

such that g(s∗(θ)) = f(θ) for all θ.

An important class of mechanisms are direct revelation mechanisms.

Definition 4 (Direct revelation mechanism). A direct revelation mechanism is a
mechanism in which si = Θi for all i and has outcomes rule g(θ̂) based on reported
types θ̂ = (θ̂1, . . . , θ̂n).

One of the most important results in mechanism design is the Revelation Principle.
It states that any mechanism can be transformed into an equivalent direct mechanism
where, in equilibrium, all agents truthfully reveal their types (that is, the mechanism is
incentive compatible).

Theorem 1 (Revelation Principle). Suppose there exists a mechanism M that imple-
ments the social choice function f(·) in dominant strategies (Bayesian-Nash equilib-
rium). Then f(·) is truthfully implementable in a dominant strategies (Bayesian-Nash)
incentive compatible direct-revelation mechanism.

The Revelation Principle suggests that mechanism designers need only be concerned
with direct-revelation mechanisms. Later in the paper we will discuss the Revelation
Principle in more detail.

In this paper we restrict ourselves to settings where agents have quasilinear prefer-
ences. That is, the utility function of an agent i has the form ui(o, θi) = vi(x, θi) + pi,
where outcome o defines an allocation x and a transfer pi for the agent.

In general, mechanisms for quasilinear preferences take a certain form.

Definition 5 (Mechanisms for quasilinear environments). A mechanism for quasi-
linear environments is a mechanism M = (S1, . . . , Sn, (k(·), t1(·), . . . , tn(·))) such
that the outcome function g(·) = (k(·), p1(·), . . . , pn(·)) where k : S1 × . . .×Sn :�→ K
is a choice rule which selects some choice from choice set K, and transfer rules pi :
S1 × . . . × Sn :�→ R. one for each agent, compute the payment ti(s) made by agent i.

In addition to quasilinear environments, we also assume that agents’ have private values.
This means that an agent’s utility depends only on its own type. Many ecommerce
applications are set in the quasilinear private-value environment. For example, many
auctions belong to this set of mechanisms. The choice rule k(·) specifies which agents
are allocated which items, and the transfers, ti(·), specify the amount each agent must
pay.

4 Computationally-Limited Agents

In this section we introduce our model of bounded rationality, in the form of computa-
tionally-limited agents. We describe a computationally-limited agent and then explain
how we incorporate these agents into a game-theoretic framework.
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4.1 A Model of a Computationally-Limited Agent

We define a computationally-limited agent to be any agent who does not know its val-
uations for items (i.e. its preferences) a priori but instead must use its computational
resources in order to determine them. We define a computationally-limited agent by its
computing resources and the tools that it has to effectively use them.

We assume that a computationally-limited agent has some set of computing re-
sources Ti. While these resources may take on many forms, for the sake of expository
ease we will use computing time as the canonical example of a resource. An agent is able
to apply its computing resources on any problem j in which it is interested in. If there
are m possible problems that an agent may compute on, then we let (t1, . . . , tm) ∈ T m

i

denote that agent i has allocated tj resources to problem j.
Agents do not have infinite computing resources. We model this limitation by a cost

function, costi : T m
i �→ {x|x ∈ R and x ≥ 0}. The only restrictions on the cost

function of an agent is that it is non-decreasing and additive. That is, given vectors
t = (t1, . . . , tm) and t′ = (t′1, . . . , t

′
m), then costi(t + t′) = costi(t) + costi(t′) and if

t ≤ t′ then costi(t) ≤ costi(t′).
We assume that computationally-limited agents are equipped with a set of algo-

rithms Ai = {Aj
i} where Aj

i is the algorithm that agent i can use for problem j.1 These
algorithms are processes which the agent runs in order to determine its valuations or
preferences. In particular, we assume that all the algorithms have the anytime property;
they can be stopped at any point in time and will return a solution, and if given addi-
tional computational resources, the algorithm will return a better solution. This allows
agents to make an explicit tradeoff between the solution quality and the cost to obtain
that solution. Many algorithms have the anytime property. For example, most iterative
refinement algorithms are anytime since they always return a solution, and improve it
if allowed to run longer. Similarly, many search and information gathering applications
can be viewed as anytime algorithms. As more information about an item is obtained,
the knowledge about its true valuation improves.

While anytime algorithms are models that allow for the trading off of computing
resources (for example, computing time) for solution quality, they do not provide a
complete solution for agents as they do not specify how this tradeoff should be made.
Instead, anytime algorithms are paired with a meta-level deliberation-control procedure
the aids in determining how long to run an algorithm, and when to stop computing and
act with the solution obtained. There are two components to the procedure; the perfor-
mance profile which describes how computing affects the output of the algorithm, and
a process for using the information in the performance profile to make decisions about
how much resources to allocate to a problem. For the rest of the paper we will use the
term performance profile to refer to both the descriptive and procedural aspects. We
use the notation PP j

i to refer to the performance profile for anytime algorithm Aj
i and

let PPi = {PP j
i }. We will additionally assume that the agents have fully normative

performance profiles which allow them to make online decisions about whether to con-
tinue computing on a certain problem, whether to stop computing, or whether to switch

1 In general, an agent can use the same algorithm on multiple problems, or can have multiple
algorithms for the same problem.
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to computing on a different problem. Such deliberation control procedures do exist. An
example is the performance profile tree [4].

To summarize, a computationally-limited agent i is defined as

〈Ti, costi(·), Ai, PPi〉.

As mentioned at the start of this section, computationally-limited agents do not know
their valuations a priori. Instead they must compute or gather information to determine
them. We assume that the valuation function of an agent (v(·, ·)) is determined by the
amount of resources allocated (t = (t1, . . . , tm)) and the allocation (x). That is, the
valuation function of agent i is vi(t, x). The utility of the agent depends on the agent’s
valuation function, the payment specified by the auction mechanism, and the cost the
agent has incurred via computing. That is

ui(t, (x, p)) = vi(t, x) − pi − costi(t).

For example, in a single item auction, if an agent i has allocated computing resources
(t1, . . . , tm) where ti is the amount of resources allocated to its own valuation problem,
then

ui(t, (x, p))=
{

vi(ti)−pi − costi(t) if i is allocated the item and has to pay price pi

−costi(t) if i is not allocated the item

4.2 Strategic Behavior of Deliberative Agents

Effectively using available computing resources in single-agent settings is difficult
enough. Having to interact with other agents complicates the problem further. Agents
must take into account the other agents’ actions in determining both how to act in the
auction and also how to compute.

Let Ci be the set of computing actions for agent i. A computing action ci
j ∈ Ci

is the act of agent i allocating one step of computation on problem j, where a step is

domain problem solver 
(black box)

deliberation controller deliberation controller

domain problem solver 
(black box)

auction

result result

bid bid

compute one step compute one step

agent agent

Fig. 2. An auction with two computationally-limited agents. In order to submit a reasonable bid,
each agent needs to first (approximately) compute its valuations for the item that is up for auction.
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defined exogenously. The action of not taking a computing step is also included in this
set and is denoted by ∅C . The vector (t1, . . . , tm) ∈ T m

i , introduced in the previous
subsection, corresponds to agent i taking t1 steps on problem 1, etc. As agents compute
they change their knowledge about how future computing will change the solutions of
the problems. This information comes from their set of performance profiles, given their
current state of deliberation. We define a state of deliberation at t = (t1, . . . , tm) to be

φi(t) = 〈n1(t1), . . . , nm(tm)〉

where nj(tj) stores the current valuation for problem j after tj computing steps were
taken on the problem, as well as the path followed to reach the valuation and any other
features deemed to be of importance for the decision making of the agent.2

We define the set Ai to be the set of non-deliberative actions that an agent i can
take. The set is defined by the auction. For example, in a sealed-bid auction, the set Ai is
simply the set of bids that the agent may submit to the auctioneer, while in an ascending
auction the set Ai is the set of messages that an agent can send to the mechanism
whenever the price increases (i.e. Ai = {in, out}). We denote the action of not taking
a non-computing action as ∅A ∈ Ai.

A strategy for a computationally-limited agent is a plan which specifies which ac-
tions to execute (computing and other) at every point in the game. A history at time
point r , H(r) ∈ H(r), when it is the turn of agent i to take an action, is defined to
be a tuple consisting of the current state of deliberation of the agent, all non-computing
actions the agent has taken, as well as all actions it has observed the other agents take.
It is now possible to define a strategy.

Definition 6 (Strategy). A strategy for a computationally limited agent i is

Si = (σr
i )∞r=0

where
σr

i : Hi(r) �→ Ci × Ai.

To make this definition more clear, we present an example. A strategy Si = (σr
i )∞r=0

for a computationally-limited agent participating in a Vickrey auction, where bids are
collected at time point R (and it is assumed that all computing must stop also) is defined
in the following way:

σr
i (H(r)) =

⎧⎨⎩
(cj , ∅A) when r < R
(cj , bi) bi ∈ R when r = R
(∅C , ∅A) when r > R

That is, before the auction the agent can take any computing action it wishes, at the
auction bid collection time the agent submits a bid, and then after the agent no longer
takes any actions.3

2 In the performance profile tree, for example, path information and feature information at auto-
matically stored in the structure.

3 In some situations an agent may be permitted to compute after the auction has closes.
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In this new, enlarged, strategy space we look for equilibria. We call these equilibria
deliberation equilibria [4]. We have noted in previous work that a new type of strategic
behavior arises when agents are computationally-limited [5]. We have coined this new
behavior strategic deliberation.

Definition 7 (Strategic Deliberation). If an agent i uses any of its computing
resources to determine another agent’s valuation, then agent i is strategically
deliberating.

In earlier work we showed that the first-price sealed-bid auction, the ascending auction,
the Vickrey auction and the generalized Vickrey auction all produce equilibria where
agents have incentive to strategically deliberate [5].

In the rest of the paper we make several assumptions, some of which have already
been described. First, we assume that agents have quasi-linear utilities. Second, we
assume that agents have private values. Finally, we assume that the agent definitions
are common knowledge. That is, we assume that the performance profiles and cost
functions of the agents are common knowledge. We do not assume that agents are able
to observe which computing actions other agents are taking during a game.

5 Designing Auctions for Deliberative Agents

In this section we study the problem of designing auctions specifically for
computationally-limited agents. We first argue that directly porting mechanism design
concepts for rational agents is not always desirable as they overlook the computational
limitations which define the agents. We then propose a set of properties which we be-
lieve auctions for computationally-limited agents should exhibit. We show that most
“interesting” auctions fail to have all these properties.

5.1 A Revelation Principle

In settings where the bidding agents are fully rational, the revelation principle states that
given any mechanism (auction) that implements some social choice function, it is pos-
sible to construct a second incentive-compatible direct-revelation mechanism (auction)
which implements the same social choice function. That is, it is possible to construct
useful auctions where the dominant strategies of the agents is to truthfully reveal their
valuations (types, θi) to the auctioneer.

If agents are computationally-limited, then they do not know their valuations, with-
out first exerting some computational effort. Agents are provided with tools (anytime
algorithms and performance profiles) which they can use to determine their valuations.
We can define the type of agent i to be the set of all computing tools that the agent has,
along with the current problem instance being computed on. That is,

θi = [〈Ti, costi(·), Ai, PPi〉, insts]

where insts is the set of problem instances.4

4 For example, a problem instance in a traveling-salesman domain is the set of delivery jobs in
a traveling-salesman application.
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Using this definition of a type it is possible to formulate a revelation principle for
computationally-limited agents.

Theorem 2. Suppose there exists a mechanism M = (S1, . . . , SI , g()) that implements
the social choice function f(·) in dominant strategies for deliberative agents. Then f(·)
is truthfully implementable in dominant strategies for computationally-limited agents.

Proof. (Sketch.) The proof follows a similar argument to the proof of the revelation
principle for rational agents. Given any mechanism, where in equilibrium an agent i
plays strategy Si, it is possible to construct another mechanism, where, when agent i
announces type θi strategy si is executed. Agent i has incentive to truthfully announce
its type in equilibrium. �

While this theorem at first appears to suggest that the tools of mechanism-design
for rational agents can be directly used in settings where agents are computationally-
limited, at second glance the reader will notice that some rather disturbing assumptions
have been made. First, the proof relies on agents being able to submit all their comput-
ing tools and information about the problems they wish to compute on. In practice this
is highly infeasible. Second, it assumes that the mechanism center is capable of deter-
mining all relevant valuation information from the information given to it. Again, it is
unrealistic to assume that the mechanism center will have enough computing resources
of its own to actually do this.

5.2 Properties of the Auctions

We believe that auctions for computationally-limited agents should have good deliber-
ative properties in addition to good economic properties. In this section we propose a
set of properties which we believe are desirable for computationally-limited agents.

In the previous section we showed that an obvious formulation of a revelation prin-
ciple simply moves the computing problems of the agents to the auctioneer. We ar-
gue that this is not a desirable property since agents should be responsible for solving
their own valuation problems. Second, we believe that it is unreasonable to assume that
agents are capable of providing detailed enough information to the auctioneer so that
the auctioneer could properly solve the problems of the agents. Finally, in many settings
the auctioneer is unlikely to have adequate computing resources of its own to solve the
computational problems of the bidding agents as well as determine the optimal outcome
once all the bidders’ computing problems have been solved. Therefore, we propose that
auctions should be non-deliberative.

Property 1 (Non-Deliberative). An auction is non-deliberative if the auctioneer does
not solve the agents’ individual deliberation problems.

The second property we wish to have is for agents to have no incentive to strate-
gically deliberate (Definition 7). Recall that most common auctions are susceptible to
strategic deliberation. We believe that strategic deliberation is an undesirable property
for several reasons. First, the use of agents’ limited computing resources on problems
which do not directly lead to improved valuations seems like a waste of resources which
could have been directed towards improving their own valuations, and possibly the so-
cial welfare of the entire market. Secondly, effectively using computing resources to
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determine valuations is a challenging problem for an agent even when it is done in iso-
lation. Having agents being concerned about computing on the valuation problems of
competitors seems to place a too high strategic load on the bidding agents. Thus, we
believe auctions for computationally-limited agents should be deliberation-proof.

Property 2 (Deliberation-Proof). An auction is deliberation-proof if, in equilibrium,
no agent has incentive to strategically deliberate.

Finally, we believe that auctions should be designed in such a way so that the bid-
ding agents have no incentive to further strategize. That is, agents should have incentive
to not misrepresent what problems they have computed on, and what solutions they
have obtained.

Property 3 (Non-Deceiving). Assume that vi is the true (expected) computed value of
agent i. A auction is non-deceiving if the agent never has incentive to send a report
to the auctioneer such that if any other agent had observed the report, their belief that
agent i’s value is vi would be 0.

A non-deceiving auction does not require that an agent directly reveal its computed
valuations. It just ensures that an agent does not lead all participants to believe that a
valuation it has obtained is not possible. For example, assume that an agent has secretly
computed a value v. A mechanism would be deceiving if the agent had incentive to
report that its value was strictly greater than v. The mechanism would not be deceiving
if the agent had incentive to report that its value was greater than some w, w < v.

5.3 Results

In this section we present our results concerning auctions for computationally-limited
agents. We will insist that the auctions must be non-deliberative, and so will focus our
attention on value-based auctions, where agents do not report information about the
algorithms or performance profiles being used.

Definition 8 (Value-based Auction). A value-based auction, M = (S1, . . . , Sn, x(),
t1(), . . . , tn()), is a mechanism where the strategies of each agent are restricted so
that they are functions only of (partially) determined valuations. Agents do not reveal
other information about performance profiles, algorithms, cost functions or problem
instances.

Value-based auctions are non-deliberative. The auctioneer is not given any of the
tools required for it to actively compute on agents’ problems. Examples of value-based
auctions include sealed-bid auctions where agents submit numerical bids, and ascending
and posted-price auctions where agents answer yes or no to the query of whether they
would be willing to buy an item at a specified price.

It is trivially easy to design value-based auctions which are deliberation-proof and
non-deceiving.

Note 1. There exist value-based auctions which are both deliberation-proof and non-
deceiving.
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Unfortunately, the obvious candidates which satisfy both of these properties are undesir-
able for other reasons. For example, any auction which randomly determines a winner
while ignoring the bids, is both deliberation-proof and non-deceiving. Similarly, any
dictatorial auction is also deliberation-proof and non-deceiving.

We place an additional restriction on the auctions for computationally-limited
agents. We insist that they must be sensitive.

Definition 9 (Sensitive). An auction is sensitive to agents’ strategies if the outcome,
o() = (x(), p()) of the auction depends on the agents’ strategies. That is, there exists
some agent i and strategies s′i, s

′′
i , s′i 	= s′′i such that for strategy profiles

s′ = (s1, . . . , si−1, s
′
i, si+1, . . . , sI) and s′′ = (s1 . . . , si−1, s

′′
i , si+1, . . . , sI),

x(s′) 	= x(s′′) and p(s′) 	= p(s′′)

In the rest of this paper we focus our attention to sensitive, value-based mechanisms.
We start by studying sealed-bid auctions to see how computationally-limited agents
behave in equilibrium. The first result states that it is impossible to design a sealed-bid
auction which is also deliberation-proof.

Theorem 3. There exists no value-based sensitive direct auction that is deliberation-
proof across all instances (where an instance is defined by the agents and the current
valuation problems).

Proof. Due to space constraints we only provide an intuition of the proof. Given any
allocation and payment rules of a sealed-bid auction, it is possible to construct perfor-
mance profiles and cost functions such that one agent is best off incurring a small cost
by computing on a competitor’s valuation problem, and thus gathering information as
to the likelihood of it being in the final allocation, before deciding whether to compute
at a cost on its own valuation problems. �

To get rid of strategic deliberation, computationally-limited agents must be provided
with enough information by the auction so that they can determine whether to devote
computing resources to their own problems or not. Many multi-stage auctions reveal
information. This information can be used by the agents to help determine which are
the best computing and non-computing actions to take. For example, in a single item
ascending auction, as the price rises the auction may reveal the number of agents re-
maining in the auction at a given price. The agents can use this information to deduce
useful valuation information about their competitors.

However, value-based multi-stage auctions still do not result in auctions with all
our proposed properties. In particular, for any multi-stage auction, there exist instances,
defined by the agents’ performance profiles and cost functions, where strategic delib-
eration occurs in equilibrium, or where agents will try to deceive their competitors by
taking actions which lead their competitors to believe that they have better valuations
than they really do.

Theorem 4. There exists no sensitive value-based auction that is deliberation-proof
and non-deceiving across all problem instances. (An instance is defined by agents’ per-
formance profiles, cost functions).
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Proof. Due to space limitations we provide only an overview of the proof. The proof is
constructive. Starting with a direct revelation mechanism (auction) which implements
some social choice function f(·), it is possible to find performance profiles and cost
functions such that strategic deliberation occurs in equilibrium. Now take any multi-
stage mechanism which implements the social choice function f(·). It is still advan-
tageous for at least one agent to learn information about the values another agent has.
If this information is not revealed at the right time through the auction, then strategic
deliberation will still occur. If, by the rules of the auction, the actions of an agent re-
veal information about its possible values, then due to the structure of the performance
profiles and cost functions, it is possible to show that one agent will misreport its value
information in order to force the second agent (ie. the agent who would have strategic
deliberated in a direct mechanism) to believe that it can not win the auction. That is,
deceiving occurs. �

To summarize, we have proposed that an auction for computationally-limited agents
should be non-deliberative, deliberation-proof, and non-deceiving. While these proper-
ties appear to be intuitive and reasonable, we have shown that it is not possible to design
interesting auctions for deliberative agents which exhibit all three properties.

6 Related Research

Both the the game theory and the computer science research communities are interested
in mechanism design issues where computation and information gathering are issues. In
this section we review the literature which is most closely related to the work presented
in this paper.

From the computer science research community there has been work on both bou-
nded-rational bidding agents and mechanisms. Sandholm noted that under a model of
costly computing, the dominant strategy property of Vickrey auctions fails to hold, even
with simple agent models [12], while Parkes has looked at using auction design to sim-
plify the meta-deliberation problems of the agents [9]. This earlier work, however, fo-
cused only on settings where agents were concerned only about computing on their own
value - ignoring the possibility of using computational resources to gather information
on competing bidders. There has also been recent work on computationally limited
mechanisms. In particular, research has focused on the generalized Vickrey auction and
investigates ways of introducing approximate algorithms to compute outcomes without
loosing the incentive compatibility property [7,3,6]. These methods still require that the
bidding agents compute and submit their valuations.

In the economics and game theory literature there has been some recent work on
information acquisition and mechanism design. This work has mainly focused on study-
ing the incentives to acquire information at different times in different auction mech-
anisms and usually assumes that an agent can gather information only on its value
problem [10,1,2]. Rasmusen’s work is the most similar to ours [11]. It assumes that
agents do not know their valuations but must invest to learn them and are also able to
invest in competitors value problems, however his focus is on understanding behav-
ior such as sniping that is commonly seen in different online auctions like eBay, and he
does not discuss the possibility of designing auctions for information gathering settings.
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7 Conclusions and Future Research

In many settings, agents participating in mechanisms do not know their preferences
(valuations) a priori. Instead, they must actively determine them through deliberation
(e.g., information processing or information gathering). Agents are faced not only with
the problem of deciding how to reveal their preferences to the mechanism but also
how to deliberate in order to determine their preferences. For such settings, we have
introduced the deliberation equilibrium as the game-theoretic solution concept where
the agents’ deliberation actions are modeled as part of their strategies.

In this paper, we laid out mechanism design principles for such deliberative agents.
We first showed that the revelation principle applies to such settings in a trivial sense by
having the mechanism carry out all the deliberation for the agents. This is impractical,
and we propose that mechanisms should be non-deliberative: the mechanism should
not be solving the deliberation problems for the agents. Second, mechanisms should be
deliberation-proof : agents should not deliberate on others’ valuations in equilibrium.
Third, the mechanism should be non-deceiving: agents do not strategically misrepre-
sent. Finally, the mechanism should be sensitive: the agents’ actions should affect the
outcome. We showed that no direct-revelation mechanism satisfies these four intuitively
desirable weak properties. This is the first impossibility result in mechanism design for
deliberative agents. Moving beyond direct-revelation mechanisms, we showed that no
value-based mechanism (that is, mechanism where the agents are only asked to report
valuations - either partially or fully determined ones) satisfies these four properties.

This result is negative. It states that either we must have mechanisms which do the
deliberating for the agents, or complex strategic (and costly) counterspeculation can oc-
cur in equilibrium. However, there is some hope. It may be possible to weaken one of
the properties slightly, while still achieving the others. For example, it may be possible
to design multi-stage mechanisms that are not value based; the mechanism could help
each agent decide when to hold off on deliberating during the auction (and when to
deliberate on one’s own valuation on different bundles of items in a combinatorial auc-
tion). In another direction, by relaxing strategic deliberation and compensating agents
appropriately, it may be possible to design mechanisms where agents who can deliber-
ate cheaply and efficiently deliberate for all agents. These are areas which we plan to
pursue in future work.
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Abstract. In this paper we describe an analysis of two double auction markets—
the clearing house auction and the continuous double auction. The complexity of
these institutions is such that they defy analysis using traditional game-theoretic
techniques, and so we use heuristic-strategy approximation to provide an approx-
imated game-theoretic analysis. As well as finding heuristic-strategy equilibria
for these mechanisms, we subject them to an evolutionary game-theoretic analy-
sis which allows us to quantify which equilibria are more likely to occur. We then
weight the design objectives for each mechanism according to the probability dis-
tribution over equilibria, which allows us to provide more realistic estimates for
the efficiency of each mechanism.

1 Introduction

A double-auction mechanism is a generalization of an auction in which both buyers
and sellers are allowed to exchange offers simultaneously. Since double-auctions allow
dynamic pricing on both the supply side and the demand side of the marketplace, their
study is of great importance, both to theoretical economists, and those seeking to im-
plement real-world market places. On the one hand, economists who are interested in
theories of price formation in idealized models of general markets have often turned to
exchange-like models such as Walrasian tâtonnement, to describe and understand the
price-formation process [2], and on the other, variants of the double-auction are used
in large real-world exchanges to trade commodities in marketplaces where supply and
demand fluctuate rapidly, such as markets for stocks, futures, and their derivatives [7].

However, the models of exchanges traditionally used by economists in general equi-
librium theory are often simplified for the purposes of analytical tractability to such an
extent that they are of scant relevance to the designers of real-world exchanges, and
even, it is sometimes argued, of scant relevance to the theoretical modelling of markets.
For example, one important simplification often made is that the number of agents par-
ticipating in a market is very large; this simplification allows relative market power and
consequent strategic effects to be ignored. However, in many real-world marketplaces,
such as deregulated wholesale electricity markets, there may be relatively few competi-
tors on one or both sides of the market. With small numbers of participants, general
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equilibrium models break down because they fail to allow for market power, and the
potential gains of strategic behavior, of participants.

An alternative approach is a sophisticated micro-theory of marketplaces called auc-
tion theory, in which the rational behavior of individual agents faced with different
pricing institutions is analyzed using game theoretic techniques. Whereas neoclassical
equilibrium theory often abstracts away from the details of individual agents, game-
theoretic models allow economists to build sophisticated micro-models of individual
agents’ reasoning and preferences. In many scenarios, especially in analyzing single-
sided monopoly markets, these models have been spectacularly successful to the extent
where they have been directly applied to the design of real-world auctions for high-value
government and corporate assets [9]. However, in other practical scenarios, especially
when it comes to analyzing and designing double-sided markets, such as exchanges,
there are still a number of problems with the theory, which we shall briefly review.

Auction-theorists typically analyze a proposed market institution by defining a set
of design objectives, and then proceed to show that these design objectives are brought
about when rational agents follow their best strategies according to a game-theoretic
analysis. The typical design objectives considered by auction-theorists are:

Allocative efficiency: The outcome of using the mechanism should be optimal in some
defined sense, for example, the total surplus generated should equal the available
surplus in competetive equilibrium.

Budget balance: No outside subsidy inwards or transfers outwards are required for a
deal to be reached.

Individual rationality: The expected net benefit to each participant from using the
mechanism should be no less than the net benefit of any alternative.

Strategy-proofness: Participants should not be able to gain an advantage from non-
truthtelling behavior.

In many applications, auction-theory demonstrates the existence of market mechanisms
that satisfy all of these properties when agents follow rationally prescribed bidding
strategies. However, the impossibility result of [13] demonstrates that no double-sided
auction mechanism can be simultaneously efficient, budget-balanced and individually-
rational. Moreover, many of the underpinnings of the theory assume that designers’
interests are restricted to only the aforementioned properties. For example, the revela-
tion principle states that, without loss of generality, we may safely restrict attention to
mechanisms in which agents reveal their types truthfully. However, this result does not
take into account the potential cost or other impracticalities of polling agents for their
type information. Once minimizing the cost of revelation is introduced as a design ob-
jective, the revelation principle ceases to hold, because there may exist partial-revelation
mechanisms with non-truthful equilibria which sacrifice strategy-proofness for expedi-
ence of revelation. This is of more than academic interest, since in real-world electronic
exchanges it is rarely possible to poll all agents for their valuations before clearing
the market; hence the continuous double-auction, in which we execute the clearing op-
eration as new offers arrive, thus increasing transaction throughput at the expense of
strategy-proofness.

In designing market places, as with any other engineering problem, we often need to
make such tradeoffs between different objectives depending on the exact requirements
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and scenario at hand. We can often satisfactorily solve such multi-objective optimisation
problems, provided that we have some kind of quantative assessment of each objective,
yet classical auction-theory provides only a binary yes or no indication of whether each
of its limited design objectives is achievable, making it extremely difficult to compare
the different trade-offs.

Further complications arise when we attempt to use auction-theory to analyze exist-
ing (“legacy”) market institutions. Exchanges such as the London Stock Exchange have
been in existence far longer than game-theory and auction-theory, thus, unsurprisingly,
the original rules of the institution were not necessarily based on sound game-theoretic
or auction-theoretic principles. Moreover, it is unrealistic to expect that core financial
institutions such as these radically alter their rules overnight in response to the lat-
est fashionable developments in auction-theory or game-theory. Rather, it may be more
salient to view financial institutions evolving gradually and incrementally in response to
a changing environment [12]. Similarly, agents participating in these institutions do not
necessarily instantaneously and simultaneously adjust their trading behavior to the the-
oretical optimum strategy; for example, adoption of a new trading strategy may spread
through a population of traders as word of its efficacy diffuses in a manner akin to
mimetic evolution.1 Thus, we may think of the institutions we see today as the out-
come of a co-evolutionary adaptation between financial institutions on the one hand,
and trading strategies on the other.

The issue of legacy institutions has ramifications for auction-design; in these con-
texts the choice of adjustments to the auction rules may be tightly constrained by ex-
isting infrastructure, both physical and social, thus it may be necessary to examine the
attainability of equilibria under the new design given existing strategic behavior in the
legacy design. Classical auction theory relies on classical game-theory which in turn
says nothing about the dynamics of adjustment to equilibrium.

For such applications, we need to turn to models of evolution and learning in strate-
gic environments; models that we collectively categorize under the banner of evolu-
tionary game theory. Models of learning and evolution as applied to agents’ strategies
are not new. Where our approach differs, however, is in the application of models of
learning and evolution to the market mechanism itself, a new field we call evolutionary
mechanism design [16,3].

In this paper, we extend our previous work on evolutionary mechanism design
by describing a more sophisticated means of analyzing the performance of a mecha-
nism. Previously we have either evolved trading strategies along with the mechanism
[16], or used a single heuristic bidding strategy [17]. Here we use a mix of heuristic
strategies, and describe a rigorous and fully automated way of evaluating a mecha-
nism using this mixture. We start in Section 2 with a description of the mechanisms
we are studying here, and, in Section 3 with use of several heuristic strategies. Then,
in Section 4, we describe our experimental set up, and in Section 5 how we use these
results to establish the evolutionary behavior of the markets. Section 6 gives results,
and Section 7 analyses them before Section 8 describes the work that we will pursue
next.

1 The adoption by derivatives traders of the Black-Scholes equation for option pricing provides
an example [10].
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2 The Continuous Double Auction Verses the Clearing-House

In a typical exchange, the market institution attempts to match offers to buy with offers
to sell in such a way that the overall surplus extracted from the market is maximized.
If offers are considered as signals of agents’ valuations for a resource, and assuming
agents signal truthfully, then an auctioneer can maximize allocative efficiency by match-
ing the highest buy offers with the lowest sell offers. In this paper we compare two types
of exchange:

– a market in which trades are executed as new offers arrive, and
– a market in which we wait for all traders to place offers before clearing the market.

Following the terminology of [6], we refer to the former as the continuous double-
auction (CDA) and the to the latter as the clearing-house (CH).

On casual inspection of the CDA, we might expect that it is designed according
to the revelation principle, and so should maximize allocative efficiency when agents
signal truthfully. Surprisingly, however, it turns out that surplus extraction in a CDA is
extremely poor under direct revelation—typical values are approximately 80 percent,
which is extremely low compared with outcomes of almost 100 percent which are ob-
served with the non-truthful strategies that are actually adopted by real traders.

The reason for this poor efficiency is easy to spot; the continuous clearing rule
results in myopic matching; when the clearing operation is performed the auctioneer
has only a partial view of the aggregate supply and demand in the market place. In order
to maintain a high throughput of actual transactions, the auctioneer impatiently clears
the market before every trader has the opportunity to place their bid. The extremely
surprising thing about this institution, however, is that rational agents acting locally
to maximize their own profit are able to compensate for this efficiency loss by placing
extra-marginal, non-truthful bids, which collectively result in high-efficiency outcomes.

Much analysis of the CDA has focused on showing that although the CDA is not a
direct revelation mechanism (DRM), it can be considered an almost-DRM by virtue of
the fact that trading strategies with only a minimal amount of intelligence are able to
extract high surpluses from the market [4]. However, such approaches are unsatisfactory
because they fail to demonstrate that such minimalist strategies are dominant against
more sophisticated strategies.

Ideally, we would like to find the game-theoretic solution for the CDA, and show
that although truth-telling or other minimalist strategies are not dominant, we can still
find the theoretical mix of strategies that are best-responses to each other, and demon-
strate that the institution performs well in game-theoretic equilibria. However, even at
this point, the CDA along with other variants of the double-auction market, confounds
auction theorists by admitting of no clear equilibrium solution [19].2 Hence in the ab-
sence of robust analytical tools, much analysis of this institution has used an ad-hoc
mixture of computer simulation and laboratory experiments [7]. These techniques are
invaluable, since they are able to faithfully incorporate many of the complex details of

2 Though this reference is dated, to the best of our knowledge it is still the case that the CDA has
no such solution.
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the market institution which lead to intractability under conventional analysis. How-
ever, the results thus obtained are often critised for being difficult to generalize in the
absence of compelling models that explain the observed outcomes.

Recently, however, techniques have been developed that combine simulation-based
approaches with an approximated game-theoretic analysis. In the following sections, we
describe and then adopt the technique proposed by Walsh and colleagues [23]. However,
our work extends the scope of Walsh et al.’s use of their technique. Whereas the orig-
inal work focuses on designing strategies for a given institution, specifically the CDA

institution, we build on this work by applying the same technique for mechanism design
issues, using it to compare the CDA and CH institutions.

3 Heuristic-Strategy Approximation

Walsh et al. introduce an approximation technique for analyzing games such as the
CDA where the sheer size of the strategy and player-type spaces makes an exhaustive
game-theoretic solution impractical [23].

3.1 Basic Approach

The central idea is simple. Rather than considering every possible pure strategy and
type in the multi-stage game, Walsh et al. simplify the analysis by considering a limited
number of high-level heuristic strategies, such as Cliff’s Zero-Intelligence Plus (ZIP)
strategy [4], and treat these high-level strategies as if they were simple pure strategies
in a normal form game. For small numbers of players and high-level strategies, this
gives rise to a relatively small normal form game payoff matrix which is amenable
to game-theoretic solution. This heuristic payoff matrix is calibrated by running many
simulations of the market game; variations in payoffs due to different player-types are
averaged over many samples of type information resulting in a single mean payoff to
each player for each entry in the payoff matrix. Players’ types are assumed to be drawn
independently from the same distribution, and an agent’s choice of strategy is assumed
to be independent of its type, which allows the payoff matrix to be further compressed,
since we simply need to specify the number of agents playing each strategy to determine
the expected payoff to each agent. Thus for a game with k strategies, we represent
entries in the heuristic payoff matrix as vectors of the form

p = (p1, . . . pk)

where pi specifies the number of agents who are playing the ith strategy. Each entry
p ∈ P is mapped onto an outcome vector q ∈ Q of the form

q = (q1, . . . qk)

where qi specifies the expected payoff to the ith strategy. For a game with n agents, the
number of entries in the payoff matrix is given by

s =
nk − 1
(k − 1)!

(1)
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For small n and small k this results in payoff matrices of manageable size; for k = 3
and n = 6, 8, and 10 we have s = 28, 45, and 66 respectively. For very large n the game
becomes intractable, but this is not of major concern since our interest is specifically in
markets with small numbers of traders where strategic effects are likely to be prominent.

3.2 Choice of Heuristic Strategies

For moderately large values of k, combinatorial explosion rapidly leads to intractabil-
ity. This constraint is of more concern than the constraint on n, since in any realistic
trading environment we might, a priori, expect agents to be confronted with a vast num-
ber of high-level strategies from which to choose. There are, for example, many auto-
mated strategies that have been proposed in the literature [4,5,8,18,22]. However, there
is evidence to show that in many real-life market scenarios traders choose from a lim-
ited number of heuristic strategies. For example, [15] discusses the observed strategic
interaction between human agents and two predominant automated bidding strategies
commonly used on two real-world auction institutions with different auction designs
(Amazon and eBay).

Following these results, we base our work in this paper on the premise that we are
modeling the effect of the adoption of automated trading agents in the CDA and CH

markets. Thus we compare the behavior of traders using a well known automated strat-
egy for the double-auction [18], and one that has been developed to emulate human
strategic behavior in market settings [5]. By comparing these representative heuristic
strategies we hope to gain insight into whether non-homogeneous populations of hu-
man and agent-based traders are strategically stable, and the likely market outcomes
when human and agent-based traders interact. In addition, because we are interested
in the strategy-proofness of the mechanisms themselves under different conditions, we
also introduce the truth-telling strategy. If a mechanism is strategy proof, it should not
be possible to do better than when truthfully report one’s limit price. Thus we have
k = 3 heuristic strategies, which is well within the limits of tractability for the Walsh
approximation technique.

4 Experimental Setup

In order to compare the CDA and CH, we must first generate a heuristic payoff matrix
for each institution by sampling many simulations of the market game. We made use of
the JASA auction simulator3 which implements a CDA marketplace as described in [22],
as well as a CH marketplace where the market is not cleared until offers from all agents
have been received.

In order to model human-like trading behavior, we adopt a trading strategy based on
a modified version of the Roth-Erev learning algorithm [5] as described in [14], which
we abbreviate RE. This is the same version of the Roth-Erev algorithm that we have
used in our previous work [16,17]—basically a reinforcement learning approach that
builds up a probability distribution over the space of possible bids. We pit this against a
strategy based on ZIP, but modified for persistent-shout markets as described by Preist

3 http://www.csc.liv.ac.uk/∼sphelps/jasa
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and Van Tol [18], which we abbreviate PvT , and the truth-telling strategy which simply
bids at the agent’s limit price, which we abbreviate TT .

As in [23], at the start of each game half the agents are randomly assigned as buyers
and the remainder are chosen as sellers. For each run of the game, we choose limit prices
from the same uniform distribution as [23], but limit prices remain fixed across periods
in order to allow agents to attempt to learn to exploit any market-power advantage
in the supply and demand curves defined by the limit prices for that game (This is
common in much experimental work in this area [4,21], and makes it possible for both
artificial traders and humans to exploit memory to quickly converge on trade prices).
Additionally, although we discard limit-prices which do not yield an equilibrium price,
we do not ensure that a minimum quantity exists in competitive equilibrium as this
introduces a floor effect which fails to expose the inferior efficiency of a CDA. We use
the Mersenne Twister random number generator [11] to draw all random values used in
the simulation. Each entry in the heuristic payoff matrix is computed by averaging the
payoff to each strategy across 2000 simulations.

5 Dynamic Analysis

Once the heuristic payoff matrix has been computed, we can subject it to a game-
theoretic analysis. In conventional mechanism design, we solve the game by finding
either a dominant strategy or the Nash equilibria: the sets of strategies that are best-
responses to each other. However, because classical game-theory is a static analysis,
it is not able to make any predictions about which equilibria are more likely to oc-
cur in practice. Such predictions are of vital importance in mechanism design prob-
lems. Since our design objectives depend on outcomes, we should give more consider-
ation to outcomes that are more likely than low probability outcomes. For example, if
there is a Nash equilibrium for our mechanism which yields very low allocative effi-
ciency, we should not worry too much if this equilibria is extremely unlikely to occur in
practice. On the other hand, we should give more weight to equilibria with high
probability.

As in [23], we use evolutionary game-theory [20] to model how agents might grad-
ually adjust their strategies over time as they learn to improve their behavior in response
to their payoffs. We use the replicator dynamics equation

ṁj = [u(ej , m) − u(m, m)] mj (2)

where m is a mixed-strategy vector, u(m, m) is the mean payoff when all players play
m, and u(ej, m) is the average payoff to pure strategy j when all players play m,
and ṁj is the first derivative of mj with respect to time. Strategies that gain above-
average payoff become more likely to be played, and this equation models a simple
co-evolutionary process of mimicry learning, in which agents switch to strategies that
appear to be more successful. For the three heuristic strategies that we have chosen
to analyze, we can interpret this process as modeling the potential uptake of ZIP-like
automated trading agent technology; for example, managers bidding using human-like
trading strategies may switch to a ZIP-like strategy if they observe a rival firm obtaining
better than average profits by using automated trading agents.



108 S. Phelps, S. Parsons, and P. McBurney

For any initial mixed-strategy we can find the eventual outcome from this coevo-
lutionary process by solving ṁj = 0 for all j to find the final mixed-strategy of the
converged population. Unlike co-evolutionary approaches that use evolutionary com-
puting to do the search, for instance [16,1], this model has the attractive properties that:

– all Nash equilibria of the game are stationary points under the replicator dynamics;
and

– all focal points of the replicator dynamics are Nash equilibria of the evolutionary
game.

Thus the Nash equilibrium solutions are embedded in the stationary points of the direc-
tion field of the dynamics specified by equation 2. Although not all stationary points are
Nash equilibria, by overlaying a dynamic model of learning on the equilibria we can see
which solutions are more likely to be discovered by boundedly-rational agents. Those
Nash equilibria that are stationary points at which a larger range of initial states will
end up, are equilibria that are more likely to be reached (assuming an initial distribution
that is uniform).

We capture this idea of “range of initial states” with the notion of a basin of attrac-
tion. The basin of attraction for a stationary point is the range of mixed strategies within
which all strategies will, under the replicator dynamics, lead to the stationary point. The
bigger the basin, the bigger the region of strategy-space which leads to the attractor, and
hence the stronger the attractor.

6 Results

Since
∑

mi = 1, each vector m lies in the unit-simplex. For k = 3 strategies we can
project the unit-simplex onto a two dimensional space and then identify the switching
between strategies. We plot this switching in Figures 1—4 which show plots of the di-
rection field defined by equation 2 for each institution. The direction field gives us a
map which shows the trajectories of strategies of learning agents engaged in repeated
interactions, from a random starting position. Thus, for Figure 1, each agent participant
has a starting choice of 3 pure strategies (TT , RE and PvT ) and any mixed (proba-
bilistic) combination of these three. The pure strategies are indicated by the 3 vertices of
the simplex (triangle), while mixed strategies are indicated by points on the boundaries
or in the middle of the simplex.

An agent is assigned a random (mixed or pure) strategy to start, and then progres-
sively adjusts this strategy over time in repeated interactions as a result of the learning
mechanism described by Equation 2. The paths shown in Figure 1 trace this sequence
of adjustments. In order not to overload the display, we have not placed arrows on
these paths, but the overwhelming majority of paths start inside the simplex and head
outwards, towards the edges and the three vertices. This indicates that the three pure
strategies act as attractors for randomly-selected mixed starting strategies. The set of
oriented paths leading to each vertex indicates the basin of attraction of the correspond-
ing pure strategy. We can assess the relative likelihood of one strategy relative to another
by comparing the size of their respective basins of attraction.

Each plot shows trajectories generated from 250 randomly sampled initial m vec-
tors. For now, we assume that every initial mixed-strategy is equally likely to be adopted
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TT 

RE 

PvT 

Fig. 1. Replicator dynamics direction field for CH with 6 agents

TT 

RE 

PvT 

Fig. 2. Replicator dynamics direction field for CDA with 6 agents
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TT 

RE 

PvT 

Fig. 3. Replicator dynamics direction field for CH with 8 agents

TT 

RE 

PvT 

Fig. 4. Replicator dynamics direction field for CDA with 8 agents
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Table 1. Pure-strategy equilibria probability distribution for 6 agents

Equilibrium CH probability payoff CDA probability payoff
TT 0.00 1.00 0.00 0.87
RE 0.50 1.00 1.00 0.98
PvT 0.50 1.00 0.00 0.93

Table 2. Pure-strategy equilibria probability distribution for 8 agents

Equilibrium CH probability payoff CDA probability payoff
TT 0.17 1.00 0.00 0.85
RE 0.18 1.00 1.00 0.98
PvT 0.65 1.00 0.00 0.92

as a starting-point for the co-evolutionary process, and so we randomly sample the ini-
tial values of m from a uniform distribution and plot their trajectories as they evolve
according to equation 2.

To automate the analysis of institutions, we need to be able to provide some metric
that allows us to quantify their performance in this kind of analysis. In other words,
we would like to measure the size of the basin of attraction of each equilibria, in order
to arrive at a probability of the equilibria actually occuring. Different equilibria will
yield different outcomes and different values of our design objectives, such as market
efficiency, and we would like to weight these according to their likelyhood.

Tables 2 and 1 show the stationary points of 1000 randomly sampled trajectories
together with the proportion of trajectories that terminate at that point. Given the ran-
dom start, this probability is an estimate of the probability of each equilibrium. In the
absence of a static analysis, we discount the stationary-points that occur with less than
1% probability. Since we know the payoffs of the various points from the heuristic pay-
off matrix, we can then compute expected payoffs, which are also shown in the table.
With probabilities over outcomes, we are in a position to assess the design of each
mechanism.

7 Discussion

First of all it is clear that TT is not dominant, and hence neither the CH or CDA mech-
anism is strategy-proof. However, it is interesting to note that when we increase the
number of agents from 6 to 8 in a CH, we see the emergence of a truth-telling equi-
librium. This agrees with the approximate analysis presented in [19], and suggests that
truth-telling may become a strategy adopted by more traders as the market grows larger.

In a CH market, we see that the most likely strategy to be played is the ZIP-like
trading agent strategy, whereas in a CDA, the human-like RE strategy is dominant.

As expected from our discussion above, we see that payoffs under truthful bidding
in a CDA are relatively low; 86% in this case. This might suggest that the CDA itself has
a rather low efficiency. However, in order to assess the efficiency of the CDA we must
take into account the fact that truthtelling is not an equilibrium. Since the RE strategy
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is dominant we should assume that all agents will eventually use this strategy, and so
our efficiency will be equal to the pure-strategy payoff for RE, which in this case is
98%. In order to calculate the efficiency for the 8-agent CH market, we need to take into
account that there are three possible pure-strategy equilibria. In this particular scenario,
each equilibria results in the same efficiency of 100%, so we can conclude that the CH

market will yield 100% efficiency in all eventualities.
Although the CDA yields lower surplus, it is not as inefficient as we might expect

had we assumed that it was designed according to the revelation principle. As [6] points
out, the main reason for choosing a CDA rather than a CH is to handle larger volumes
of trade, and our results here suggest that this is a reasonable trade-off. Switching to a
CDA from a CH as the New York Stock Exchange did in the 1860s, does not seem likely
to entail a large loss of efficiency.

The above analysis assumes that all initial points in the mixed-strategy phase-space
are equally likely to be selected. However, if we are in a situation where we are propos-
ing to make changes to an existing “legacy” exchange with existing traders, our obser-
vations of current trading behavior in the legacy mechanism may influence our beliefs
about likely behavior in any proposed altered version of the mechanism. For example,
we may be tasked with assessing the likely impact in switching from a CH clearing rule
to an exchange with continuous clearing. If we observe that traders bid truthfully in the
existing mechanism, then when we come to perform the dynamic analysis for the new
design, we may decide to weight our distribution of initial mixed-strategies in favor of
truth-telling to reflect current observations.

8 Further Work

What we have demonstrated in this paper is an approach that provides an approxi-
mate game-theoretic analysis, involving equilibria over multiple heuristic strategies, for
mechanisms that do not admit an analytical solution. This is fully automated, and gives
us a means of analyzing and hence comparing auction mechanisms. Our previous work
has demonstrated proof-of-concept for the idea of evolving auction mechanisms, for
example using genetic programming to evolve parts of the pricing mechanism for a
double auction market [17], establishing the quality of the market using a single heuris-
tic strategy.

Since all parts of the approach we have detailed here are fully automated, it is pos-
sible to combine the these two lines of work. This will enable us to create new auction
mechanisms and then use the kind of analysis described here to rate them, thus search-
ing the space of possible mechanisms while rigorously analyzing them. With our current
implementation running on a 1.4Ghz Athlon AMD processor, it takes approximately
24-hours to generate the heuristic payoff matrix and perform the dynamic analysis for
a single 10-agent mechanism. We hope to significantly reduce this evaluation cost by

– using a more selective sampling, as in [24] for example;
– further optimizing our code, and
– reducing the number of samples at the expense of accuracy whilst using an opti-

mization algorithm that will be robust to the additional noise.
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Finally, we recognize that the existence of dominant strategies, and the lack of
mixed-strategy attractors are probably as a result of us not taking a representative set of
heuristic strategies for these early experiments. Future work will extend the number of
heuristic strategies that are are used in our analysis.

With these techniques we will move closer to our overall goal of completely auto-
mated mechanism design.
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Abstract. An approach to auctions and bidding is founded on observations and
expectations of the opponents’ behavior and not on assumptions concerning the
opponents’ motivations or internal reasoning. A bidding agent operates in an
information-rich environment that includes real-time market data and data ex-
tracted from the World Wide Web. This agent employs maximum entropy in-
ference to determine its actions on the basis of this uncertain data. Maximum
entropy inference may be applied both to multi-issue and to single-issue negotia-
tion. Multi-issue variants of the four common auction mechanisms are discussed.

1 Introduction

Game theory, dating back to the work of John von Neumann and Oscar Morgenstern,
provides the basis for the analysis of auctions and bidding. There is a wealth of material
in this analysis [7] originating with the work of William Vickrey. Fundamental to this
analysis is the central role of the utility function, and the notion of rational behavior by
which an agent aims to optimize its utility, when it is able to do so, and to optimize its
expected utility otherwise. Analyses that are so founded on game theory are collectively
referred to as game theoretic, or GT.

The application of GT to the design of auction mechanisms has been both fruitful
and impressive — rational behavior provides a theoretical framework in which mech-
anism performance may be analyzed. A notable example being the supremely elegant
Generalized Vickrey mechanism [14]. GT also leads to prescriptive results concerning
agent behavior, such as the behavior of agents in the presence of hard deadlines [13].
The general value of GT as a foundation for a prescriptive theory of agent behavior
is limited both by the extent to which an agent knows its own utility function, and
by its certainty in the probability distributions of the utility functions (or, types) of its
opponents.

In some negotiations — such as when an agent buys a hat, a car, a house or a
company — she may not know her utility with certainty. Nor may she be aiming to
optimize anything — she may simply want to buy it. Further, she may be even less
certain of her opponents’ types, or whether her opponents are even aware of the concept
of utility. In such negotiations, an agent may be more driven towards establishing a
feeling of personal “comfort” through a process of information acquisition, than by a
desire to optimize an uncertain personal utility function.1

1 After becoming CEO of Citicorp in 1967, Walter Wriston said: “Banking is not about money;
it is about information”. It is tempting to echo this as “Negotiation is not about utility;. . . ”.
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A negotiation agent, Π , attempts to fuse the negotiation with the information that is
generated both by and because of it. To achieve this, it draws on ideas from information
theory rather than game theory. Π decides what to do — such as whether to bid in an
auction — on the basis of information that may be qualified by expressions of degrees
of belief. Π uses this information to calculate, and continually re-calculate, probability
distributions for that which it does not know. One such distribution, over the set of all
possible deals, expresses Π’s belief in the acceptability of a deal. Other distributions
attempt to predict the behavior of its opponents — such as what they might bid in an
auction. These distribution are calculated from Π’s knowledge and beliefs using maxi-
mum entropy inference. Π makes no assumptions about the internals of its opponents,
including whether they have, or are even aware of the concept of, utility functions.
Π is purely concerned with its opponents’ behavior — what they do — and not with
assumptions about their motivations.

Maximum entropy inference is chosen because it enables inferences to be drawn
from incomplete and uncertain information, and because of its encapsulation of com-
mon sense reasoning [10]. Unknown probability distributions are inferred using maxi-
mum entropy inference [8] that is based on random worlds [4]. The maximum entropy
probability distribution is “the least biased estimate possible on the given information;
i.e. it is maximally noncommittal with regard to missing information” [6]. As applied to
the analysis of auctions, maximum entropy inference presents four difficulties. First, it
assumes that what the agent knows is “the sum total of the agent’s knowledge, it is not
a summary of the agent’s knowledge, it is all there is” [10]. This assumption referred to
as Watt’s Assumption [5]. So if knowledge is absent it may do strange things. Second,
it may only be applied to a consistent set of beliefs — this may mean that valuable in-
formation is destroyed by the the belief revision process that copes with the continuous
arrival of new information. Third, its knowledge base is expressed in first-order logic.
So issues that have unbounded domains — such as price — can only be dealt with either
exactly as a large quantity of constants for each possible price, or approximately as price
intervals. This decision will effect the inferences drawn and is referred to as represen-
tation dependence [4]. Fourth, maximum entropy can be tricky to calculate — although
here the equivalent maximum likelihood problem for the Gibbs distribution [11] was
solved numerically without incident by applying the Newton-Raphson method to as
many non-linear, simultaneous equations as there are beliefs in the knowledge base.
Despite these four difficulties, maximum entropy inference is an elegant formulation
of common sense reasoning. Maximum entropy inference is also independent of any
structure on the set of all possible deals. So it copes with single-issue and multiple-
issue negotiation without modification. It may also be applied to probabilistic belief
logic. These properties are particularly useful in analyzing auctions and bidding.

The information-theory oriented analysis described here, which employs maximum
entropy inference, is referred to as ME in contrast to GT.

2 Bidding Agent Π

The form of negotiation considered is between bidding agents and an auctioneer Υ in
an information rich environment. The agent described here is called the Bidding Agent,
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or Π , it engages in auctions with a set of S opponents {Ω1, · · · , ΩS}. General informa-
tion is extracted from the World Wide Web using special purpose bots that import and
continually confirm information that is then represented in pre-specified predicates. Π
receives information by observing its opponents {Ωi} and from these bots.

The integrity of information decays in time. Little appears to be known about how
the integrity of information, such as news-feeds, decays. One source of information
is the signals received by observing the behavior of the opponent agents both prior to
a negotiation and during it. For example, if an opponent bid $8 in an auction for an
identical good two days ago then my belief that she will bid $8 now could be 0.8. When
the probability of a decaying belief approaches 0.5 the belief is discarded.

2.1 Agent Architecture

The agents communicate using the following predicate: Bid(.), where Bid(δ) means
“the sender bids a deal δ”. A deal is a pair of commitments δΠ:Ω(π, ω) between an agent
Π and an opponent agent Ω, where π is Π’s commitment and ω is Ω’s commitment.
D = {δi}D

i=1 is the deal set — ie: the set of all possible deals. If the discussion is
from the point of view of a particular agent then the subscript “Π :” may be omitted,
and if that agent has just one opponent that the “Ω” may be omitted as well. These
commitments may involve multiple issues and not simply a single issue such as trading
price. The set of terms, T , is the set of all possible commitments that could occur in
deals in the deal set. An agent may have a real-valued utility function: U : T → �, that
induces a total ordering on T . For any deal δ = (π, ω) the expression U(ω) − U(π) is
called the surplus of δ, and is denoted by L(δ) where L : T × T → �. For example,
the values of the function U may expressed in units of money. It may not be possible
to specify the utility function either precisely or with certainty.2 This is addressed in
Sec. 4 where a predicate Accept(.) represents the acceptability of a deal.

Π has a knowledge base K and a belief set B. Each of these two sets contains state-
ments in a first-order language L. K contains statements that are generally true. The
belief set B = {βi} contains statements, βi, that are each qualified with a given sen-
tence probability, B(βi) that represents the agent’s belief in the truth of the statement.
The integrity of the statements in B may decay in time. The distinction between the
knowledge base K and the belief set B is simply that K contains unqualified statements
and B contains statements that are qualified with sentence probabilities. This apparently
odd distinction is made because K and B play different roles in the method described
in Sec. 2.2.

Π’s actions are determined by its “strategy”. A strategy is a function S : K×B → A
where A is the set of actions. The idea is that at certain distinct times the function S is
applied to K and B and the agent does something. The set of actions, A, is limited to
sending Bid(.) messages to the auctioneer Υ . The way in which S works is described
in Sec. 5. In between the discrete times at which S is activated, information may arrive.
Incoming information from all sources is time-stamped and placed in an “In Box”, X ,
as it arrives. Then, momentarily before the S function is activated, a “revision function”

2 The often-quoted oxymoron “I paid too much for it, but its worth it.” attributed to Samuel
Goldwyn, movie producer, illustrates that intelligent agents may negotiate with uncertain
utility.
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R is activated: R : (X × K × B) → (K × B). R clears the “In Box”, and updates K
and B to ensure consistency. It is not described here.

2.2 Maximum Entropy Inference

Π uses maximum entropy inference. Let G be the set of all positive ground literals that
can be constructed using the predicate and function symbols in L.3 A possible world is
a valuation function v : G → {�, ⊥}. That is, a possible world assigns either true (�)
or false (⊥) to each ground literal in G. V denotes the set of all possible worlds, and
VK denotes the set of possible worlds that are consistent with the agent’s knowledge
base K [4].

A random world for K is a probability distribution WK = {pi} over VK = {vi},
where WK expresses an agent’s degree of belief that each of the possible worlds is the
actual world. The derived sentence probability of any sentence σ in L, with respect to a
random world WK is:

PWK(σ) �
∑

n

{ pn : σ is � in vn } (1)

That is, we only admit those possible worlds in which σ is true. A random world WK is
consistent with the agent’s beliefs B if: (∀β ∈ B)(B(β) = PWK(β)). That is, for each
belief its derived sentence probability as calculated using Eqn. 1 is equal to its given
sentence probability.

The entropy of a discrete random variable X with probability mass function {pi} is
defined in the usual way [8]: H(X) = −

∑
n pn log pn where: pn ≥ 0 and

∑
n pn = 1.

Let W{K,B} be the “maximum entropy probability distribution over VK that is con-
sistent with B”. Given an agent with K and B, its derived sentence probability for any
sentence, σ, in L, is:

P(σ) = PW{K,B}(σ) (2)

Using Eqn. 2, the derived sentence probability for any belief, βi, is equal to its given
sentence probability. So the term sentence probability is used from here on without
ambiguity. Π uses maximum entropy inference which attaches the derived sentence
probability to any given sentence σ.

Maximizing Entropy with Linear Constraints. If X is a discrete random variable
taking a finite number of possible values {xi} with probabilities {pi} then the entropy
is the average uncertainty removed by discovering the true value of X , and is given
by H = −

∑
n pn log pn. The direct optimization of H subject to a number, θ, of

linear constraints of the form
∑

n pngk(xn) = gk for given constants gk, where k =
1, · · · , θ, is a difficult problem. Fortunately this problem has the same unique solution
as the maximum likelihood problem for the Gibbs distribution [11]. The solution to both
problems is given by:

pn =
exp

(
−

∑θ
k=1 λkgk(xn)

)
∑

m exp
(

−
∑θ

k=1 λkgk(xm)
) , n = 1, 2, · · · (3)

3 Constants are 0-ary functions.
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where the constants {λi} may be calculated using Eqn. 3 together with the three sets of
constraints: pn ≥ 0,

∑
n pn = 1 and

∑
n pngk(xn) = gk.

3 Representation Dependence

ME is criticized [4] because the way in which the knowledge is formulated in K and
B determines the values derived. This property is promoted here as a strength of the
method because the correct formulation of the knowledge base, using the rich expres-
sive power of first-order probabilistic logic, encapsulates features of the application at
a fine level of detail.

Price is a common issue in auction and market applications. Two ways of repre-
senting price in logic are: to establish a logical constant for each possible price, and
to work instead with price intervals. Admitting the possibility of an interval containing
just one value, the second generalizes the first. To represent price using price intervals,
we have to specify the “width” of each interval. Suppose in an application an item will
be sold in excess of $100. Suppose the predicate TopBid(Ω, δ) means “δ is the highest
price that agent Ω is prepared to bid”. This predicate will satisfy: ∀xy((TopBid(Ω, x)∧
TopBid(Ω, y)) → (x = y)). A crude representation of the set of possible bids is as
two logical constants in L: [100, 200) and [200, ∞). Following the development in
Sec. 2.2, there are two positive ground literals in G: TopBid(Ω, [100, 200)) and Top-
Bid(Ω, [200, ∞)), and there are three possible worlds: {(⊥, ⊥), (�, ⊥), (⊥, �)}. In the
absence of any further information, the maximum entropy distribution is uniform, and,
for example, the probability that Ω’s highest bid ≥ $200 is 1

3 . Now if the set of pos-
sible bids had been represented as three logical constants: [100, 150), [150, 200) and
[200, ∞], then the same probability is 1

4 . Which is correct: 1
3 or 1

4? That depends on
Π’s beliefs about Ω. In both of these examples, by using ME, and by specifying no
further knowledge about TopBid(.), we have implicitly asserted that the probability of
each possible world being the true world is the same. In the first example all three are 1

3 ,
and in the second all four are 1

4 . This is what happens when the “maximally noncom-
mittal” distribution is chosen. Conversely, if believe that: ∀x, y(P(TopBid(Ω, x)) =
P(TopBid(Ω, y))) then it is not necessary to include this in K — it is implicitly present
and we should appreciate that it is so. Sec. 1 mentioned Watt’s Assumption, that as-
sumption says more than it might at first appear to.

Following from the previous paragraph with just two logical constants, suppose the
predicate MayBid(Ω, δ) means “Ω is prepared to make a bid of δ”. Assuming the Ω will
prefer to pay less than more, this predicate will satisfy: κ1 : ∀x, y((MayBid(Ω, x) ∧
(x ≥ y)) → MayBid(Ω, y)), where x and y are intervals and the meaning of “≥” is
obvious. With just κ1 in K there are three possible worlds: {(⊥, ⊥), (�, ⊥), (�, �)}.
The maximum entropy distribution is uniform, and, P(MayBid(Ω, [100, 200))) = 2

3 ,
and P(MayBid(Ω, [200, ∞])) = 1

3 . With no additional information, P(TopBid(Ω, x))
will be uniform and P(MayBid(Ω, x)) will be linear decreasing in x.

The conclusion to be drawn from the previous two paragraphs is that when an issue
is represented using intervals there is no “right” or “wrong” choice of intervals. How-
ever, choosing the intervals so that the expected probability distribution of at least one
key predicate is uniform over those intervals may simplify K and B.
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In GT each agent models its opponents by speculating on their type. Beliefs con-
cerning an opponent’s type may be represented as a probability distribution over its
expected utility. In ME the relative truth of possible worlds are determined by state-
ments in first-order probabilistic logic that represent beliefs concerning the opponents’
behavior. So ME models its opponents in a fundamentally different way to GT, and uses
a richer language to do so.

An exemplar application is used following. It concerns the purchase of a particular
second-hand motor vehicle, with some period of warranty, for cash. So the two issues in
this negotiation are: the period of the warranty, and the cash consideration. The mean-
ing of the predicate MayBid(Ω, δ) is unchanged but δ now consists of a pair of issues
and the deal set has no natural ordering. Suppose that Π wishes to apply ME to estimate
values for: P(MayBid(Ω, δ)) for various δ. Suppose that the warranty period is simply
0, · · · , 4 years, and that the cash amount for this car will certainly be at least $5,000
with no warranty, and is unlikely to be more than $7,000 with four year’s warranty.
In what follows all price units are in thousands of dollars. Suppose then that the deal
set in this application consists of 55 individual deals in the form of pairs of warranty
periods and price intervals: { (w, [5.0, 5.2)), (w, [5.2, 5.4)), (w, [5.4, 5.6)), (w, [5.6,
5.8), (w, [5.8, 6.0)), (w, [6.0, 6.2)), (w, [6.2, 6.4)), (w, [6.4, 6.6)), (w, [6.6, 6.8)), (w,
[6.8, 7.0)), (w, [7.0, ∞)) }, where w = 0, · · · , 4. Suppose that Π has received intel-
ligence that agent Ω is prepared to bid 6.0 with no warranty, and to bid 6.9 with one
year’s warranty, and Π believes this with probability 0.8. Then this leads to two beliefs:
β1 : TopBid(0, [6.0, 6.2)); B(β1) = 0.8, β2 : TopBid(1, [6.8, 7.0)); B(β2) = 0.8.
Following the discussion above, before “switching on” ME, Π should consider whether
it believes that P(MayBid(Ω, δ)) is uniform over δ. If it does then it includes both β1
and β2 in B, and calculates W{K,B} that yields estimates for P(MayBid(Ω, δ)) for all
δ. If it does not then it should include further knowledge in K and B. For example, Π
may believe that Ω is more likely to bid for a greater warranty period the higher her bid
price. If so, then this is a multi-issue constraint, that is represented in B, and is qualified
with some sentence probability.

4 From Utility to Acceptability

One aim of this discussion is lay the foundations for a normative theory of auctions and
bidding that does not rely on knowledge of an agent’s utility, and does not require an
agent to make assumptions about her opponents’ utilities or types, including whether
they are aware of their utility. Such a theory must provide some mechanism that de-
termines the acceptability of a deal; ie: the probability that the deal is acceptable to an
agent. Agent, Π , is attempting to buy or bid for a second-hand motor vehicle with a
specific period of warranty as described in Sec. 3. Here, Π is bidding in a multi-issue
auction for a vehicle, where the two issues are price and warranty period. Possible rules
for this auction are described in Sec. 5.

The proposition (Accept(δ) | It) means: “Π will be comfortable accepting the deal
δ given that Π knows information It at time t”. In an auction for terms ω, Π’s strategy,
S, may bid one or more π for which P(Accept((π, ω)) | It) ≥ α for some threshold
constant α. This section describes how Π estimates: P(Accept(δ) | It). The meaning
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of Accept(δ) is described below, it is intended to put Π in the position “looking back
on it, I made the right decision at the time” — this is a vague notion but makes good
sense to the author.

With the motor vehicle application in mind, P(Accept(δ) | It) is derived from con-
ditional probabilities attached to four other propositions: Suited(ω), Good(Ω), Fair(δ),
and Me(δ). meaning respectively: “terms ω are perfectly suited to Π’s needs”, “Ω will
be a good agent for Π to be doing business with”, “δ is generally considered to be a fair
deal at least”, and “on strictly subjective grounds, the deal δ is acceptable to Π”. These
four probabilities are: P(Suited(ω) | It), P(Good(Ω) | It),
P(Fair(δ) | It∪{Suited(ω), Good(Ω)}) and P(Me(δ) | It∪{Suited(ω), Good(Ω)}).
The last two of these four probabilities factor out both the suitability of ω and the ap-
propriateness of the opponent Ω. The third captures the concept of “a fair market deal”
and the fourth a strictly subjective “what ω is worth to Π”. The “Me(.)” proposition is
closely related to the concept of a private valuation in game theory. This derivation of
P(Accept(δ) | It) from these four probabilities may not be suitable for assessing other
types of deal.

To determine P(Suited(ω) | It), if there are sufficiently strong preference relations
to establish extrema for this distribution then they may be assigned extreme values ≈
0.0 or 1.0. Π is then repeatedly asked to provide probability estimates for the offer
ω that yields the greatest reduction in entropy for the resulting distribution [8]. This
continues until Π considers the distribution to be “satisfactory”. This is tedious but the
“preference acquisition bottleneck” appears to be an inherently costly business [2].

To determine P(Good(Ω) | It) involves an assessment of the reliability of the
opponent Ω. For some retailers (sellers), information — of varying reliability — may
be extracted from sites that rate them. For individuals, this may be done either through
assessing their reputation established during prior trades [12], or through the use of
some intermediate escrow service that is rated for “reliability” instead.

P(Fair(δ) | It ∪ {Suited(ω), Good(Ω)}) is determined by reference to market
data. Suppose that recently a similar vehicle sold with three year’s warranty for $6,500,
and another less similar was sold for $5,500 with one year’s warranty. These are fed
into It and are represented as two beliefs in B: β3 : Fair(3, [6.4, 6.6)); B(β3) = 0.9,
β4 : Fair(3, [5.4, 5.6)); B(β4) = 0.8. In an open-cry auction one source of market
data is the bids made by other agents. The sentence probabilities that are attached to
this data may be derived from knowing the identity, and so too the reputation, of the
bidding agent. In this way the acceptability value is continually adjusted as information
becomes available. In addition to β3 and β4, there are three chunks of knowledge in K.
First, κ2 : Fair(4, 4999) that determines a base value for which P(Fair) = 1, and two
other chunks that represent Π’s preferences concerning price and warranty:

κ3 : ∀x, y, z((x > y) → (Fair(z, x) → Fair(z, y)))
κ4 : ∀x, y, z((x > y) → (Fair(y, z) → Fair(x, z)))

The deal set is a 5 × 11 matrix with highest interval [7.0, ∞). The three statements
in K mean that there are 56 possible worlds. The two beliefs are consistent with each
other and with K. A complete matrix for P(Fair(δ) | It) is derived by solving two
simultaneous equations of degree two using Eqn. 3. As new evidence becomes available
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it is represented in B, and the inference process is re-activated. If new evidence renders
B inconsistent then this inconsistency will be detected by the failure of the process to
yield values for the probabilities in [0, 1]. If B becomes inconsistent then the revision
function R identifies and removes inconsistencies from B prior to re-calculating the
probability distribution. The values were calculated using a program written by Paul
Bogg, a PhD student in the Faculty of IT at UTS, [1]:

w = 0 w = 1 w = 2 w = 3 w = 4
p = [7.0, ∞) 0.0924 0.1849 0.2049 0.2250 0.2263
p = [6.8, 7.0) 0.1849 0.3697 0.4099 0.4500 0.4526
p = [6.6, 6.8) 0.2773 0.5546 0.6148 0.6750 0.6789
p = [6.4, 6.6) 0.3697 0.7394 0.8197 0.9000 0.9053
p = [6.2, 6.4) 0.3758 0.7516 0.8331 0.9147 0.9213
p = [6.0, 6.2) 0.3818 0.7637 0.8466 0.9295 0.9374
p = [5.8, 6.0) 0.3879 0.7758 0.8600 0.9442 0.9534
p = [5.6, 5.8) 0.3939 0.7879 0.8734 0.9590 0.9695
p = [5.4, 5.6) 0.4000 0.8000 0.8869 0.9737 0.9855
p = [5.2, 5.4) 0.4013 0.8026 0.8908 0.9790 0.9921
p = [5.0, 5.2) 0.4026 0.8053 0.8947 0.9842 0.9987

The two evidence values are shown above in bold face.
Determining P(Me(δ) | It ∪ {Suited(ω), Good(Ωi)}) is a subjective matter. It is

specified using the same device as used for Fair except that the data is fed in by hand
“until the distribution appears satisfactory”. To start this process first identify those δ
that “Π would be never accept” — they are given a probability of ≈ 0.0, and second
those δ that “Π would be delighted to accept” — they are given a probability of ≈ 1.0.
The Me proposition links the ME approach with “private valuations” in GT.

The whole “accept an offer” apparatus is illustrated in Fig. 1. The in-flow of infor-
mation from the Internet, the market and from the opponent agents is represented as
It and is stored in the knowledge base K and belief set B. In that Figure the � sym-
bols denote probability distributions as described above, and the ◦ symbol denotes a
single value. The probability distributions for Me(δ), Suited(ω) and Fair(δ) are derived
as described above. ME inference is then used to derive the sentence probability of the
P(Accept(δ) | It) predicate from the sentence probabilities attached to the Me, Suited,
Good and Fair predicates. This derivation is achieved by two chunks of knowledge and
two beliefs. Suppose that Π’s “principles of acceptability” require that:

κ5 : (Me ∧ Suited ∧ Good ∧ Fair) → Accept
κ6 : (¬Me ∨ ¬Suited) → ¬Accept

these two statements are represented in K, and there are 19 possible worlds as shown in
Table 1. Suppose that Π believes that:

β5 : (Accept | Me ∧ Suited ∧ ¬Good ∧ Fair); B(β5) = 0.1
β6 : (Accept | Me ∧ Suited ∧ Good ∧ ¬Fair); B(β6) = 0.4

these two beliefs are represented in B. Then for β5: P(Accept | Me ∧Suited∧¬Good ∧
Fair) = Accept∧Me∧Suited∧¬Good∧Fair

Me∧Suited∧¬Good∧Fair = v14
v14+v15

, and so: 9 × v14 − v15 = 0. Likewise for
β6: 3 × v16 − 2 × v17 = 0.
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P(Me(δ)) P(Suited(ω)) P(Good(Ω)) P(Fair(δ))

P( Accept(δ)  | It )

� �� �

It
K B

Internet Market data Ω1 • • • Ωs

Agent Π

Fig. 1. Acceptability of a deal

Table 1. vi is the agent’s degree of belief that the i’th possible world is the actual world

VK Me Suited Good Fair Accept
v1 ⊥ ⊥ ⊥ ⊥ ⊥
v2 ⊥ ⊥ � ⊥ ⊥
v3 ⊥ ⊥ ⊥ � ⊥
v4 ⊥ ⊥ � � ⊥
v5 ⊥ � ⊥ ⊥ ⊥
v6 ⊥ � � ⊥ ⊥
v7 ⊥ � ⊥ � ⊥
v8 ⊥ � � � ⊥
v9 � ⊥ ⊥ ⊥ ⊥
v10 � ⊥ � ⊥ ⊥
v11 � ⊥ ⊥ � ⊥
v12 � ⊥ � � ⊥
v13 � � � � �
v14 � � ⊥ � �
v15 � � ⊥ � ⊥
v16 � � � ⊥ �
v17 � � � ⊥ ⊥
v18 � � ⊥ ⊥ �
v19 � � ⊥ ⊥ ⊥

The ME inference process is rather opaque — it is difficult to look at Eqn. 3 and
guess the answer. In an attempt to render the inference digestible [3] uses a Bayesian
net to derive P(Accept). In contrast, the derivation is achieved here using ME. Table 2
contains some reassuring sample values. The extreme cases in which the values of the
probabilities for the four evidence variables is either 1.0 or 0.0 are self-evident. The cases
in which one of these values is 0.9 differ because β5 tempers the Good case, and β6 the
Fair case rather more so. The case when the evidence probabilities are all 0.5 gives 0.129
for the probability when there is null information about the evidence. If the agent had
no beliefs at all, ie: It only contained κ5 and κ6 then vi = 1

19 , and P(Accept) = 4
19 .



124 J. Debenham

Table 2. Sample values derived for P(Accept)

P(Me) P(Suited) P(Good) P(Fair) P(Accept)
1.000 1.000 1.000 1.000 1.000
0.900 1.000 1.000 1.000 0.900
1.000 0.900 1.000 1.000 0.900
1.000 1.000 0.900 1.000 0.910
1.000 1.000 1.000 0.900 0.940
0.950 0.950 0.950 0.950 0.834
0.900 0.900 0.900 0.900 0.688
0.500 0.500 0.500 0.500 0.129
0.000 0.000 0.000 0.000 0.000

The Accept predicate generalizes the notion of utility. If It contains (Me ↔ Accept)
then P(Accept) = P(Me). Then define P(Me(π, ω)) to be: 0.5 ×(U(ω)−U(π)

U(ω)−U(π) + 1) for

U(ω) > U(π) and zero otherwise, where: ω = arg maxω{U(ω) | (π, ω) ∈ D}.4

An acceptability threshold α of 0.5 will then accept deals for which the surplus is non-
negative. In this way Accept represents utility-based negotiation with a private valuation.

5 Auctions

The ME analysis of auctions focuses on what agents actually do rather than their reasons
for doing what they do. The four common auction mechanisms are considered for an
auctioneer, Υ , a single item and multi-issue bids each consisting of a set of deals. In the
Dutch auction the auctioneer calls out successive sets of deals until one bidding agent
shouts “mine”. In the first- and second-price, sealed-bid mechanisms, bidding agents
submit any number of multi-issue bids. The “Australian” mechanism is a variant of the
common English mechanism in which agents alternately bid successive sets of deals
until no further bids are received — as each set of deals is received the auctioneer iden-
tifies the current winning bid. So, unlike in the multi-issue English mechanism, in the
Australian mechanism the auctioneer is not required to publicize fully her winner deter-
mination criterion in advance, and the bidders are not required to submit successive bids
that are increasing with respect to that criterion. In the two sealed-bid mechanisms and
the Australian mechanism the auctioneer determines the winner — and the runner up
in the second-price mechanism — using a preference ordering on the set of all possible
deals that may be made known to the bidding agents. The bids in these auctions may
contain a large number of deals which is rather impractical.

Consider what happens from the auctioneer’s point of view. Υ ’s expectation of what
might happen will rely on both an understanding of the motivations and strategies of the
agents taking part, and the rules of the auction mechanism. These two matters will effect

4 The annoying introduction of ω may be avoided completely by defining P(Me(π, ω)) =
1

1+exp(−β×(U(ω)−U(π)) for some constant β. This is the well-known sigmoid transfer func-
tion used in many neural networks. This function is near-linear for U(ω) ≈ U(π), and is
concave, or “risk averse”, outside that region. The transition between these two behaviors is
determined by the choice of β.
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Υ ’s choice of deal set, but otherwise the analysis is the same for the four common auc-
tion mechanisms. Suppose that there are S agents, {Ωi}S

i=1, bidding in the auction, and
the value set, D = {δi}D

i=1, contains D elements. Suppose that Υ has a total preference
ordering, �Υ , on the deal set, D, and that D is labeled such that if i > j then δi �Υ δj .
Let the predicate TopBid(Ω, δ) now mean “deal δ is the highest bid that Ω will make
with respect to the order �Υ ”. There are S×D ground literals in terms of this predicate.
This predicate will satisfy: κ7 : ∀ixy((TopBid(Ωi, x) ∧ TopBid(Ωi, y)) → (x = y)).
Suppose that the deal set, D, has been chosen [see Sec. 3] so that Υ expects each of
the (D + 1)S possible worlds that are consistent with κ7 to be equally probable for
TopBid(.) for each Ωi for i = 1, . . . , S.5 The maximum entropy distribution is uni-
form and ∀ijP(TopBid(Ωi, δj)) = 1

D+1 . Let the predicate WinningBid(δ) mean “deal
δ is the highest bid that the {Ωi}S

i=1 will make with respect to the order �Υ ”. Then:
κ8 : ∀i(WinningBid(δi) ↔ (¬∃jkTopBid(Ωj , δk) ∧ (k > i)) ∧ (∃nTopBid(Ωn, δi)).
There are now (S × D) + D ground literals in terms of these two predicates, but still
only (D + 1)S possible worlds. So:

P(WinningBid(δi)) =
(
1 − D − i

D + 1

)S

×
(
1 −

( i

i + 1

)S)
(4)

For example, if S = 2 and D = 3 then the probability of the highest of the three
possible deals being bid by at least one of the two agents is 7

16 . If the total ordering �Υ

is established by a utility function then this result enables the estimation of the expected
utility.6 The analysis completed so far may be applied to any sealed-bid auction, or to
any open-cry auction prior to any bids being placed. Once the bidding starts in an open-
cry auction, information about what agents are, or are not, prepared to bid is available.
This information may alter a bidding agent’s assessment of the acceptability of a deal
by feeding into the Fair(.) predicate — see Sec. 4. It also alters the assessments of the
probabilities of what the various opponents will bid, and of any deal being the winning
bid. Bids made in an Australian auction provide lower limits, and bids not made in a
Dutch auction provide upper limits, to what the opponents will bid.7 As these limits
change the assessment of these probabilities are revised using Eqn. 3. A formula for
P(WinningBid(δi)) in terms of these limits is rather messy.8 The value derived for

5 This is the symmetric case when the expected performance of each of the S bidding agents is
indistinguishable.

6 In the continuous GT analysis, if Xi is a random variable representing the amount bid by Ωi,
and if the distributions for the Xi are uniform on [0, 1] then the expected value of the winning
bid is given by the expected value of the Sth order statistic E(X(S)) = S

S+1 .
7 This is the asymmetric case.
8 In the continuous GT analysis, given a sample of S non-identical, independent random vari-

ables {Xi}S
i=1 where Xi is uniform on [Ci, 1]. For each sample, pi = P(Xi ≥ X) = 1−X

1−Ci

if Ci ≤ X ≤ 1 and zero otherwise. So the probability that none of the Xi exceed
Y ≥ max{Ci} is P(Y ) =

∏S
j=1(1 − pi) =

∏S
j=1

Y −Cj

1−Cj
which is the probability dis-

tribution function for the largest Y . Then E(Y ) =
∫ Y =1

Y =max{Ci} Y × f(Y ) × dY where

f(Y ) = (
∏S

j=1
Y −Cj

1−Cj
) × (

∑S
i=1

1
Y −Ci

). For example, for S = 2, C1 = c, C2 = d,

0 ≤ c ≤ d ≤ 1 then E(Y ) = 4−(3×d)−d3+(3×c×(d2−1))
6×(1−c)×(1−d) , and if c = d = 0 then E(Y ) = 2

3
as we expect.
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P(WinningBid(δi)) relies on κ7 and κ8 in K, together with expressions of the observed
limits and the assumed expectation that each possible world is equally probable for
TopBid(.).

Now consider the four auctions from a bidding agent’s point of view. Two strate-
gies, S, for bidding agents are described for illustration only. First, a keen agent who
prefers to trade on any acceptable deal to missing out — they are not primarily try-
ing to optimize anything — although in the Australian auction they may choose to bid
strategically, and may attempt to reach the most acceptable deal possible. Second, a
discerning agent who attempts to optimize expected acceptability, and is prepared to
miss out on a deal as a result.

First, consider keen agents. In a first-price, sealed-bid auction these agents will bid
the entire set {δ | P(Accept(δ) | It) ≥ α}. In an Australian, open-cry auction these
agents agent may attempt to submit bids that are just “superior” to the bids already
submitted by other agents. The meaning of “superior” is determined by �Υ and may
be private information. If a bidding agent does not know �Υ then it will have to guess
and assume it. Suppose that Δ is the set of bids submitted so far by the opponents in an
Australian auction. First define the set of bids that are just superior to Δ: Δ+ = {δ ∈
D | δ /∈ Δ, ∃δ1 ∈ Δ, δ �Υ δ1, ∀δ2((δ �Υ δ2 �Υ δ1) → ((δ2 = δ) ∨ (δ2 = δ1)))}.
Now bid {argmaxδ{P(Accept(δ) | It) | (P(Accept(δ) | It) ≥ α) ∧ (δ ∈ Δ+)}}.
To avoid bidding against itself in a Vickrey auction an agent will bid a set of deals that
forms a shell, Σ, with respect to �Υ [ie: ∀δiδj ∈ Σ(¬(δi �Υ δj))]. An agent will
only bid in a Vickrey auction if �Υ is known, because that ordering will determine the
“highest” non-winning bid. This uncertainty makes the Vickrey auction less attractive to
keen agents than the other three forms. If keen agents do not feed bidding information
into their acceptability mechanism in the open-cry cases, then the expected revenue
will be greatest in the first-price, sealed-bid, followed by the Dutch and then by the
Australian — it is not clear how the Vickrey auction fares due to the uncertainty in
it. Feeding bidding information into the acceptability mechanisms of keen agents may
have an inflationary effect on expected revenue in an Australian auction, and bidding
non-information may have a deflationary effect in the Dutch auction. The extent to
which these effects may change the expected-revenue ordering will be strategy-specific.

Second, consider discerning agents. A similar analysis to the result in Eqn. 4 may
be used by a discerning agent to optimize expected acceptability in the symmetric case.
This analysis follows the general pattern of the standard GT analysis for utility opti-
mizing agents — see for example [15] — it is not developed here. For a discerning
agent, the Vickrey mechanism has a dominant strategy to bid at, and the Australian
mechanism right up to, the acceptability margin. For the Dutch and first-price mecha-
nisms, the acceptability of the deals bid will be shaded-down from the margin. In both
the Dutch and the Australian mechanisms, the margin of acceptability may move as
bidding information becomes available.

5.1 Take-it-or-Leave-it

The take-it-or-leave-it mechanism is a degenerate auction in that an agent makes a sin-
gle bid that stands until it is withdrawn. An opponent agent may then choose to ac-
cept a standing bit. Further, some popular auctions, such as eBay, offer vendors the
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facility of a “Buy Now” option. To use this option the vendor has to determine a
take-it-or-leave-it price. The case of one buyer and one seller is considered here. In-
troduce the predicate WillTrade(Ω, δ) meaning “that agent Ω will accept a proposed
deal δ”. Then an “acceptability optimizing” Π , with information It, will offer Ω the
deal: arg maxδ(P(WillTrade(Ω, δ)) × P(Accept(δ) | It)). For multi-issue δ the dis-
tribution for P(WillTrade(Ω, δ)) is evaluated using Eqn. 2, and the distribution for
P(Accept(δ) | It) using the method in Sec. 4.

The single-issue case is analyzed to illustrate the “ME method” and because it gives
a different value to GT. Suppose that a seller has a good that she values at r and wishes to
determine a take-it-or-leave-it price. First assume that the single buyer Ω will prefer to
pay less than more: κ9 : ∀xy((δx > δy) → (WillTrade(Ω, δx) → WillTrade(Ω, δy))).
Second, following Sec. 3, choose the intervals D = {δi}D

i=1 such that W{{κ9},B}
is uniform, where D is ordered naturally. Then VK contains D + 1 possible worlds
for the predicate WillTrade(Ω, δ) for δ ∈ D, and P(WillTrade(Ω, δi)) = i

D+1 . Sup-
pose that the seller knows the additional information that Ω will pay δy and will not
pay δn. Then K now contains two further sentences: κ10 : ¬WillTrade(Ω, δn) and
κ11 : WillTrade(Ω, δy). There are now n − y possible worlds, the maximum en-
tropy distribution is uniform, and using Eqn. 2: P(WillTrade(Ω, δi)) = n−i

n−y , y ≤
i ≤ n. In general the seller’s expected surplus in offering the deal δ to agent Ω is:
P(WillTrade(Ω, δ)) × (U(δ) − r), where U(δ) is the utility as in Sec. 2.1. In the con-
tinuous case, the “expected utility-optimizing price” is U(δn)+r

2 — this price is in terms
of only the seller’s valuation r and the knowledge ¬WillTrade(Ω, δn) — it is inde-
pendent of the knowledge WillTrade(Ω, δy). Both ME and GT assume κ9. In the GT
analysis [15], the expected utility optimizing price is: u+r

2 where u is the upper bound
of an assumed uniform distribution for Ω’s utility. The GT analysis relies on that as-
sumption. The ME analysis relies on the observation WillTrade(Ω, δy) and shows that

the price is: U(δn)+r
2 . It is no surprise that these expressions have a similar structure.

However they do not have the same value. Ω may be aware of her utility, uΩ, for the
good. The inherent inefficiency of bilateral bargaining [9] shows for an economically
rational Ω that uΩ, and so consequently u, may be greater than U(δn). Further, δn may
be a “high” offer and u may be less than U(δn). It is unlikely that they will be equal.

6 Conclusions

Auctions have been considered from the point of view of agents that bid because they
feel comfortable as a result of knowledge acquisition, rather that being motivated by
expected utility optimization. Information is derived generally from the World Wide
Web, from market data and from observing the behavior of other agents in the market.
The agents described do not make assumptions about the internals of their opponents.
In competitive negotiation, an agent’s motivations should be kept secret from its op-
ponents. So speculation about an opponent’s motivations necessarily leads to an end-
less counter-speculation spiral of questionable value. These agents require a method
of uncertain reasoning that can operate on the basis of a knowledge base that contains
first-order statements qualified with sentence probabilities. Maximum entropy infer-
ence is eminently suited to this requirement, and has the additional bonus of operating
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with logical constants and variables that represent individual deals. So the deals may
be multi-issue. Four simple multi-issue auction mechanisms have been analyzed for
two classes of agent: keen agents that are primarily motivated to trade, and discerning
agents that are primarily motivated by the optimization of their expected acceptability.
The acceptability mechanism generalizes game theoretic utility in that acceptability is
expressed in terms of probabilities that are dynamically revised during a negotiation in
response to both changes in the background information and the opponents’ actions.

References

1. P. Bogg. http://www-staff.it.uts.edu.au/ plbogg/negotiation/demos/maxent/.
2. J. Castro-Schez, N. Jennings, X. Luo, and N. Shadbolt. Acquiring domain knowledge for

negotiating agents: a case study. Int. J. of Human-Computer Studies (to appear), 2004.
3. J. Debenham. Bargaining with information. In Proceedings Third International Conference

on Autonomous Agents and Multi Agent Systems AAMAS-2004, July 2004.
4. J. Halpern. Reasoning about Uncertainty. MIT Press, 2003.
5. M. Jaeger. Representation independence of nonmonotonic inference relations. In Proceed-

ings of KR’96, pages 461–472. Morgan Kaufmann, 1996.
6. E. Jaynes. Information theory and statistical mechanics: Part i. Physical Review, 106:620–

630, 1957.
7. P. Klemperer. The Economic Theory of Auctions : Vols I and II. Edward Elgar, 2000.
8. D. MacKay. Information Theory, Inference and Learning Algorithms. Cambridge University

Press, 2003.
9. R. Myerson and M. Satterthwaite. Efficient mechanisms for bilateral trading. Journal of

Economic Theory, 29:1–21, 1983.
10. J. Paris. Common sense and maximum entropy. Synthese, 117(1):75–93, 1999.
11. S. D. Pietra, V. D. Pietra, and J. Lafferty. Inducing features of random fields. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 19(2):380–393, 1997.
12. S. Ramchurn, N. Jennings, C. Sierra, and L. Godo. A computational trust model for multi-

agent interactions based on confidence and reputation. In Proceedings 5th Int. Workshop on
Deception, Fraud and Trust in Agent Societies, 2003.

13. T. Sandholm and N. Vulkan. Bargaining with deadlines. In Proceedings of the National
Conference on Artificial Intelligence (AAAI), 1999.

14. H. Varian. Mechanism design for computerized agents. In Proceedings Usenix Workshop on
Electronic Commerce, pages 13–21, July 1995.

15. E. Wolfstetter. Topics in Microeconomics. Cambridge UP, 1999.



Multi-attribute Bilateral Bargaining
in a One-to-Many Setting

E.H. Gerding1, D.J.A. Somefun1, and J.A. Han La Poutré1,2
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Abstract. Negotiations are an important way of reaching agreements between
selfish autonomous agents. In this paper we focus on one-to-many bargaining
within the context of agent-mediated electronic commerce. We consider an ap-
proach where a seller negotiates over multiple interdependent attributes with
many buyers individually. Bargaining is conducted in a bilateral fashion, using
an alternating-offers protocol. In such a one-to-many setting, “fairness,” which
corresponds to the notion of envy-freeness in auctions, may be an important busi-
ness constraint. For the case of virtually unlimited supply (such as information
goods), we present a number of one-to-many bargaining strategies for the seller,
which take into account the fairness constraint, and consider multiple attributes
simultaneously. We compare the performance of the bargaining strategies using
an evolutionary simulation, especially for the case of impatient buyers and small
premature bargaining break off probability. Several of the developed strategies
are able to extract almost all the surplus; they utilize the fact that the setting is
one-to-many, even though bargaining occurs in a bilateral fashion.

1 Introduction

It is common to characterize negotiations by their setting: bilateral, one-to-many, or
many-to-many. In this paper we focus on the one-to-many bargaining setting, where a
seller agent negotiates, on behalf of a seller, with many buyers individually in a bilateral
fashion. We develop various strategies for this setting which enable a seller agent to
bargain over multiple interdependent issues simultaneously and effectively.

In many cases, auctions can be used to effectively organize one-to-many bargain-
ing. Depending on the setting, auctions can provide buyers with the incentive to reveal
their preferences truthfully, and to allocate the goods efficiently. For various situations,
however, auctions may not be the preferred protocol to bargainers. In situations of, for
example, virtually unlimited supply, multiple issues, continuous sale, and/or repeated
sales to the same buyers the appropriate auction protocol becomes, at best, much more
complex. Consequently, businesses may opt for the intuitive and flexible bilateral bar-
gaining protocol, where the seller agent negotiates bilaterally with one or more buyers
simultaneously by exchanging offers and counter offers. In many electronic commerce
domains supply is flexible and new goods can be reproduced quickly, at relatively low

P. Faratin and J.A. Rodrı́guez-Aguilar (Eds.): AMEC 2004, LNAI 3435, pp. 129–142, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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costs; especially in these domains businesses may opt for a bilateral bargaining protocol.
The sales of information goods, with its virtually unlimited supply, provide a particu-
larly good example of an application domain where businesses may opt for bilateral
bargaining.

Potentially, bargaining can lead to unsatisfied customers if buyers perceive the out-
comes of the negotiations as unfair. This can occur when, for instance, two customers
obtain similar goods at the same time but end up paying very different amounts. Fair-
ness of negotiation outcomes is important for customer satisfaction, which in turn may
be important for a business’ long term profitability. The seller agent can prevent unfair
outcomes by incorporating a fairness norm, comparable to the notion of envy-freeness
in auctions [1], whereby customers are treated in a similar fashion. This fairness aspect
emphasizes that bargaining is really one-to-many.

The challenge is to develop bargaining strategies for the seller agent that maximize
overall revenue by utilizing differences in buyers’ willingness to pay without violating
the fairness constraint. In this paper we focus on strategies that can utilize differences in
customers’ time pressure. For the case of virtually unlimited supply, as for information
goods, we present a number of one-to-many bargaining strategies for the seller, which
take into account the fairness constraint and bargain over multiple attributes. In order to
benefit from time pressure, these strategies specify—in addition to an actual (counter)
proposal or an acceptance proposal—when to respond to an opponent’s proposal. We
compare the performance of the bargaining strategies using an evolutionary simulation,
especially for the case of impatient buyers and small (exogenous) probability (per ne-
gotiation round) of a customer breaking off the negotiations. One set of strategies, the
so-called “responsive threshold” strategies, are able to extract almost all the surplus,
given sufficient time pressure. These strategies benefit from the fact that the setting
is one-to-many, even though bargaining occurs in a bilateral fashion. In addition, the
strategies are able to find win-win agreements (i.e., very little Pareto improvement is
possible).

A number of related papers study bargaining using an evolutionary approach,
e.g. [2,3,4,5]. Our approach extends previous research to multiple (types of) buyers
and bilateral negotiation strategies for one-to-many multi-issue bargaining which can
benefit from time pressure. In addition a growing body of literature exists on multi-
issue negotiation, which focus on developing techniques a seller and/or a buyer can use
to determine the relative magnitude of the various issues and consequently search for
approximately win-win (or Pareto-efficient) deals [6,7,8,9]. Although we also consider
the problem of how to determine the values for the various attributes of an offer, the
focus of the paper lies on the development of “threshold” strategies for one-to-many
negotiation. These strategies determine the desired utility level of a deal and can be
used in conjunction with the techniques already developed in the literature.

The remainder of the paper is organized as follows. In Section 2 we describe the
bargaining setting and introduce strategies for one-to-many bargaining. In Section 3 we
discuss the simulation environment used for testing the performance of the strategies.
We present the simulation results of the conducted computer experiments in Section 4.
Conclusions follow in Section 5.
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2 One-to-Many Bargaining

2.1 Fairness

An agent representing a business can be endowed with various bargaining strategies.
The bargaining outcome should, however, be fair. Because fairness must be ensured
by the seller and because buyer preferences are private, we define fairness as follows.
Suppose at time td a buyer reaches a deal. We say that this deal is fair, relative to a fixed
interval Δ > 0, whenever there exist a start time ts, with td ∈ [ts, ts + Δ], such that
the seller is indifferent between any other deal reached within the interval [ts, ts + Δ].
Whenever price is the only issue, a buyer does not strictly prefer any deal for which
the seller is indifferent. In this case, we can give the following equivalent definition: a
deal is fair, relative to a fixed interval Δ > 0, whenever there exist a start time ts, with
td ∈ [ts, ts + Δ], such that the buyer does not strictly prefer any other deal which is
reached within the interval [ts, ts + Δ]. Note, that this definition of fairness is closely
related to the notion of envy-free auctions in [1]; it adapts the notion of envy-freeness
to the more continuous setting of bilateral bargaining.

2.2 Bargaining Protocol

The seller agent negotiates with many buyer agents simultaneously in a bilateral fashion
by alternating offers and counter offers. An offer specifies a value for each attribute of
the negotiation, such as the price, quality, quantity, and other relevant aspects. The pro-
tocol allows for multiple offers to be submitted simultaneously. Exchanging multiple
offers can improve the (Pareto) efficiency of agreements made when several attributes
are concerned. An offer constitutes a Pareto improvement over another offer whenever it
makes one bargainer better off without making the other worse off. A bargainer propos-
ing multiple offers can be indifferent between those offers whereas his opponent may
prefer a particular offer and can improve efficiency by selecting this offer.

We call the set of offers combined with the preconditions a proposal. A bargainer
can accept one of the submitted offers or reject all offers and place a counter proposal.
Negotiations between a buyer and seller agent proceed to the next round whenever a
proposal is submitted and terminates when one of the submitted offers is accepted or
after a predefined period of time has elapsed. Note that a bargainer can introduce a delay
before submitting a counter proposal. The duration of a round varies depending on the
delay. Figure 1 depicts the alternating offer bargaining protocol.

2.3 Time Pressure

An important assumption is that buyers are impatient and prefer an early agreement.
Time pressure or time impatience is a common assumption in bargaining, e.g. [10].
The seller agent is simultaneously and continuously negotiating with many buyers and
is therefore less concerned with immediately reaching an agreement for a particular
bargaining outcome, i.e., he is relatively patient. We model this relative time patience
by assuming that the seller, unlike the buyers, has no direct time pressure: i.e., the
seller is indifferent between selling now and later. In the experiments we do, however,
consider a small exogenous probability (per negotiation round) of a customer breaking
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Responder = Buyer or SellerInitiator = Seller or Buyer

1:propose(Offers, Precondition)

2:abort−bargaining

2:accept−proposal(Offer, Condition)

2:propose(Offers, Precondition)

3:accept−proposal(Offer, Condition)

3:abort−bargaining

3:propose(Offers, Precondition)

Fig. 1. The agents’ bargaining protocol

off the negotiation process; therefore the seller has an indirect incentive to speed up the
negotiations (all else equal).

At least in theory, the seller can benefit from buyers’ time-pressure by introducing
a delay before submitting a counter proposal. An important question is then which
bargaining strategies can most effectively utilize these potential benefits. Experimental
results discussed in Section 4 show that responsive threshold strategies, which we will
discuss in the next Section, are very effective: depending on the time pressure, they are
capable of extracting very large shares of the seller surplus. (Reasoned from the seller’s
perspective the surplus is just the maximum utility he can realize by selling the goods
or services.)

2.4 One-to-Many Bargaining Strategies

The challenge is to develop bargaining strategies for the seller agent that maximize
overall revenue by utilizing differences in buyers’ willingness to pay without violating
the fairness constraint. Instead, these strategies utilize differences indirectly through
buyers’ time pressure. In order to benefit from time pressure, a strategy specifies, in
addition to an actual (counter) proposal or an acceptance proposal, when to respond to
an opponent’s proposal.

The seller strategies as developed determine the offers of a proposal in two steps.
First, they specify a threshold level which sets the utility level of the offers. Second,
they generate the values for the individual attributes, given the threshold. Advanced
techniques for multi-issue negotiation, such as discussed in [6,7,8,9], can be applied to
the latter. The focus of this paper is on effective strategies for determining the threshold;
we therefore only consider the relatively simple technique of randomly determining the
attribute-values given a threshold. The probability with which a value of an attribute is
determined may however depend on a buyer’s corresponding offer (see below).

Besides specifying the utility of a (counter) proposal, the threshold is also used to
determine when to respond to an outstanding proposal. More precisely, a seller strategy
responds with a fixed delay to all outstanding proposals which lie below the (current)
threshold value; a proposal lies below the threshold value whenever the seller’s utility
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for all offers in the proposal lies below the threshold value. While applying a delay to
all proposals below the threshold value, the seller agent continues to negotiate with the
remaining buyers by immediately responding with a counter proposal.

This negotiation without delay with the select group of buyers can, in principle, con-
tinue for several rounds. During these rounds the threshold is not adjusted. The goal at
this time is to improve the Pareto-efficiency of the final agreement by finding mutually
beneficial trade offs between the various attributes. In the simulation the seller agent
only makes a single proposal to improve the efficiency of the deal. For a particular pro-
posal of a buyer the seller strategy randomly generates offers within the neighborhood
of the buyer’s best offers, i.e., with the highest utility for the seller. This already suffices
for very efficient outcomes. If a buyer does not accept one of the seller agent’s offers,
the seller agent will again respond with delay.

Another aspect that needs to be considered by the seller agent is the fairness of the
agreements. Fairness prescribes that the seller should be indifferent between the deals
made within the defined time interval. Whenever the seller agent almost simultaneously
accepts two different offers a bargaining outcome may be unfair. The seller strategy
ensures fairness by always making a (interesting) counter proposal, instead of accept-
ing an offer directly. The seller agent can be equipped with a number of strategies for
determining the threshold, which we introduce below.

Fixed and Time-Dependent Threshold Strategies. For purpose of comparison we in-
troduce a fixed threshold strategy. Clearly, the fixed threshold strategy is not capable of
utilizing buyers’ time pressure. The purpose of the strategy is to provide some insights
in the minimal extractable profit, given strategic behavior of the buyers.

The second strategy we consider is a time-dependent threshold strategy: the current
utility or threshold depends on time. The threshold only changes from one period to
the next. Unlike the fixed-threshold strategy the time-dependent strategy is capable of
utilizing buyers’ time pressure. Its success, however, depends on how much it knows
about buyers’ preferences, or how easily more about buyers’ preferences can be learned,
in relation to time-based pricing strategies.

Responsive Threshold Strategies. The fixed and time-dependent threshold strategies
do not adjust the threshold based on the buyers’ offers. Inspired by the first-price auc-
tion, we introduce another type of bargaining strategy with a responsive threshold. With
this strategy, all offers submitted by the buyers within a certain fixed time interval are
collected after the previous offers made by the seller agent. Then it determines the cur-
rent highest utility, which is equal to the utility of the best offer from the collection of
offers. The threshold is set to the current highest utility.

The success of the responsive threshold strategy does not depend on some (a pri-
ori) knowledge of buyer preferences, unlike the fixed and time-dependent strategies.
Intuitively, buyers who— due to time pressure— suffer more from delay are inclined
to bargain less “hard-headed” than other buyers. Consequently, these buyers may reach
a deal sooner and pay a higher price. Thus, at least potentially, the strategy is capa-
ble of utilizing buyers’ time pressure without requiring (a priori) knowledge of buyer
preferences. Unlike auctions, actual bargaining occurs in an alternating exchange of of-
fers and counter offers, typically initiated by a buyer. Parties bargain over the price and
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other relevant aspects of the provided good or service. Even though the seller agent’s
strategy can be auction-inspired, buyers will be unaware of this fact. They do not know
the opponent’s bargaining strategy on forehand; they perceive the bargaining process as
bilateral. Buyers may of course suspect some relationship with other ongoing negotia-
tions. The point is that unlike a true auction the relationship with other simultaneously
submitted offers is not specified up front, through a set of rules.

Reservation Value. A drawback of the responsive threshold strategy is that it becomes
vulnerable whenever groups of buyers experience very little time pressure. Without
time pressure buyers have no incentive to buy soon. They may all independently decide
to initially submit very low offers; consequently utility will be very low for the seller.
To circumvent this we also consider responsive threshold strategies with a reservation
value. A seller agent is never willing to sell below the reservation value. This means we
alter the earlier definition of the current highest utility. It now becomes the maximum
of the reservation value and the best offer from the offers collected within a certain
time interval. An interesting advantages of introducing a reservation value occurs when
some but not all buyers experience very little time-pressure. The responsive threshold
strategy can then still utilize the time-pressure of the other buyers.

We consider two approaches for determining the reservation value. Either the reser-
vation value is fixed, like the fixed-threshold strategy, or it is time dependent, like the
time-dependent threshold strategy. Thus the responsive threshold strategy with a reser-
vation value is actually a combination of the responsive threshold strategy (without
reservation value) and either the fixed or time-dependent strategies.

3 Bargaining Simulation Environment

We apply a simulation environment in order to evaluate the performance and robust-
ness of the above negotiation strategies against many learning buyers. The agents in
the simulation are assumed to be boundedly rational: they can learn and adapt their
strategies by a process of trial and error, and they do not know the seller’s strategy.
The bargaining process is repeated many times, enabling buyers and the seller to learn
from past interactions. An evolutionary algorithm is used to model the learning aspect
of the agents. This is a common approach within the field of agent-based computational
economics (ACE) [11]. A number of related papers study bargaining using an evolution-
ary approach, e.g. [2,3,4,5]. Our approach extends previous research to multiple (types
of) buyers and bilateral negotiation strategies for one-to-many multi-issue bargaining
which can benefit from time pressure.

3.1 The Bargaining Game

The seller agent negotiates with many buyer agents simultaneously by alternating offers
and counter offers as described in Section 2.2, where the buyer agents initiate the ne-
gotiations. For our simulations we set a maximum number of n discrete periods, where
n is set sufficiently large such that it has no significant impact on the results. For the
analysis we assume that offers consist of two interdependent attributes, e.g. the price
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and the quality. We note that buyer agents in the simulation may leave the negotia-
tions prematurely (due to a bargaining break off probability) but do not enter later. We
also assume that, since buyers are impatient, buyer agents in the simulation will re-
spond to the seller agent’s counter offers without delay. This is modeled by having the
buyer’s counter proposal or acceptance proposal occur in the same period as the seller’s
proposal.

3.2 Buyers and Their Agents

Buyers are interested in buying at most one good in each bargaining game. They can
have different preferences regarding the time pressure and attribute value combinations,
which together constitute the buyer type. For the analysis we assume a finite number
of k types. Although k is fixed, the number of participating buyer agents of each type
varies randomly for each negotiation game and is determined independently by a Pois-
son distribution with average λ.

To illustrate the feasibility of our approach for interdependent attributes, we use the
well-known Cobb-Douglas utility function to represent a player’s preferences for the
two attributes. More specifically, the utility ui for buyer type i in case of a disagreement
equals zero and in case of an agreement ui is defined as

ui = (v1,i − o1)αi(v2,i − o2)βiδt
i ,

where αi and βi are parameters that indicate the relative importance of the attributes; o1
and o2 are the negotiated values the seller receives for the attributes (and the buyer has
to give in); and v1,i and v2,i represent the maximum buyer i’s is willing to give in on the
individual attributes. For example, let attribute 1 and 2 refer to price and quality. Then o1
represents the price and o2 the difference between the maximum quality and the actual
quality of the good received; v1,i then represents the maximum price buyer i is willing
to pay and v2,i the maximum buyer i is willing to give in on the quality. Furthermore, δi

is the discount factor used to model the time pressure, and t is the negotiation time. In
the simulation depreciation occurs at discrete time intervals. Therefore, δ is the discrete
representation of time pressure and t indicates the period in which an agreement is
reached. Note that discount factors are commonly used for modeling time pressure, e.g.
in the Rubinstein-Ståhl alternating-offers model [10].

Buyer Agent’s Strategy. The buyer agents in the simulation apply time-dependent strate-
gies similar to the seller’s time-dependent threshold strategy described in Section 2.4.
The buyer agent also uses an analogous (random) strategy for determining the values of
the attributes given the threshold. The time-dependent strategy consists of a piece-wise
linear function to determine the threshold. The parameters that determine the function
are adaptive: using an evolutionary algorithm they evolve such that the performance of
the strategy increases.

We also applied an extended strategy in our experiments by using two separate
piece-wise linear functions: one produces the threshold for determining the utility level
of the offers and the other function determines the threshold for accepting or rejecting
the seller’s offers. The separation of the two functions enhances the bargaining capa-
bilities of the buyer agent. Results using the two representations are very similar. The
outcomes presented in this paper are based on the extended strategy.
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3.3 Seller Agent

The seller agent bargains with a number of buyers simultaneously, without knowing
the type of these buyers. The seller agent’s utility in case of an agreement equals us =
oαs
1 oβs

2 , and is zero in case of a disagreement (recall from Section 2.3 that the we can
assume the seller has no time pressure). The total utility equals the sum of utilities
obtained over all buyers. Production costs are set to zero.

We consider five strategies for the seller agent: fixed threshold, time-based threshold,
responsive threshold and two combined strategies (see also Section 2.4). The time-based
threshold strategy is similar to the strategy used by the buyer. The first two strategies
and the combined strategies have parameters which determine respectively the threshold
value and the reservation value during a bargaining game. These parameters are adap-
tive: optimal values are learned using an evolutionary algorithm, explained below. The
responsive threshold strategy does not have any parameters that need to be learned.

3.4 The Evolutionary Algorithm

Evolutionary algorithms (EAs) are a class of search algorithms inspired by Darwin’s
theory on variation and natural selection, and are becoming increasingly popular for
modeling economic behavior, particularly within the field of agent-based computational
economics (ACE), see e.g. [11]. We use an implementation based on “evolution strate-
gies” [12], which is typical for real-valued encoding of the strategies (whereas the more
popular branch of “genetic algorithms” is originally based on binary encoding).

The EAs are used to produce effective bargaining strategies for the buyer agents.
Strategies for the agents of different buyer types are produced by separate EAs, which
operate in parallel. This allows for heterogeneous strategies to emerge. Furthermore, in
case of an adaptive seller agent, a separate EA is also used to produce strategies for the
seller agent. A graphical representation of the evolutionary simulation with two buyer
types and an adaptive seller agent is given in Fig. 2.

Each EA starts with a population of parent strategies, which are randomly gener-
ated. The EA then performs the following cycle to improve the quality or fitness of the
strategies. First, the reproduction operator generates a population of offspring strategies
by randomly selecting strategies from the parent population and slightly mutating the
strategy to obtain variation.

In the next step, the fitness of the strategies is determined by the average utility
obtained in a number of bargaining games. At the start of each bargaining game, the
number of participating buyers of each type is determined randomly using a Poisson
distribution as described above. Buyer agents are then generated for each buyer and are
assigned a randomly selected strategy from either the parent or offspring population of
the corresponding type. Similarly, a strategy is selected randomly for the seller agent
(in case of an adaptive seller). The bargaining game is played for a fixed number of
times, determining the number of buyers and assigning new strategies at the start of
each game.

In the final stage of the cycle, a deterministic selection scheme called (μ + λ)-
selection chooses the strategies with the highest fitness from both the parents and the
offspring populations as the new parents for the next generation [12]. The cycle is re-
peated for a fixed number of generations.
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Fig. 2. The EA cycle for negotiations with two buyer types and an adaptive seller

Strategy Encoding. As mentioned in Section 3.2, the buyer agent’s strategy consists
of two piece-wise linear functions: an offer and a threshold function. The functions are
encoded using real values, where each bending point of a function is encoded by two
real values (i.e., the period and the corresponding threshold value). Additionally, two
end points mark the values for the first and last period. For example, 8 real values are
needed to encode a pair of functions with two line pieces each.

The same representation is used for the seller agent if he uses a time-based thresh-
old strategy. If a fixed threshold is used, only a single real value is needed to encode
this. Note that the seller agent uses the same function for both the threshold and for
producing offers.

Mutation with Exponential Decay. The mutation operator changes the strategy of an
agent as follows. Each real value xi is mutated by adding a zero-mean Gaussian variable
with a standard deviation σ [12]: x′

i := xi + σNi(0, 1). All resulting values larger than
unity (or smaller than zero) are set to unity (respectively zero). In our simulations,
we use a model of exponentially decaying standard deviations. This approach ensures
convergence and is analogous to simulated annealing, where a temperature parameter
determines the variation of the solution. A half-life parameter determines the number
of generations that the mutation standard changes to half the value.

4 Experimental Results

4.1 Settings

In this paper we report on two series of experiments with either a 0% or a 1% exogenous
customer break off probability: a break off probability of 1% means that at every new
round there is a 1% probability of an active customer breaking off (or leaving) the
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current bargaining game. The following settings are used for both series of experiments.
(We note that also experiments are carried out using other settings, e.g. with a different
number of participating buyers and buyer valuations, resulting in very similar outcomes,
but are omitted due to space limitations.) Buyers are grouped into three types (k = 3),
each type having adaptive bargaining strategies evolving in separate populations. The
time pressure (discount factor) for each type is set as a control parameter. The values
v1,i and v2,i, and the parameters αi and βi are randomly generated from a uniform
distribution at the beginning of each experiment, such that v1,i, v2,i ∈ [100, 300] and
αi, βi ∈ [0.7, 0.9]. A buyer furthermore has a minimum threshold value, which is a
minimum acceptable utility and is fixed at 10% of the most favourable utility (i.e., the
utility ui when o1 = o2 = 0, see Section 3.2).

The piece-wise linear functions of the buyer agents, and of the seller agent in case
of time-based threshold strategy, consist of two line pieces. The number of buyers of
each type participating in a bargaining game is determined randomly by a Poisson dis-
tribution with the average λ = 10. Buyers and sellers produce 3 offers in each round,
which are randomly selected given a threshold value. However, when the seller pro-
duces counter offers without delay to improve Pareto efficiency (see Section 2.4), the
seller generates 5 offers in the vicinity of the buyer’s best offers. The length of a bar-
gaining game is set to 40 periods.

The EA settings are chosen such that results are robust and the EAs are able to find
good solutions. All buyer types use equal settings, with 20 strategies in the parent pop-
ulations and 20 offspring strategies. The mutation standard deviation (see Section3.4)
is initially set to 0.2, and decays with a half-life value of 50 generations. The EA set-
tings for the seller are the same, except that each seller population only contains 10
strategies. Buyers have larger populations because more buyers than sellers participate
each game, and because in case of the extended buyer strategy (with two functions) the
search space for the buyer is larger (a higher population size is often recommended for
larger search spaces). The fitness of the strategies for a single generation is determined
by 100 bargaining games. For these settings the EAs are able to find almost optimal
solutions for simple test cases.

4.2 Results

The results reported in this Section are obtained after a process of learning, when the
strategies have converged. It is important to note that, during learning, the preferences
of the buyers remain unchanged, although the number and composition (i.e., number of
each type) of buyers can differ in each bargaining game. Experiments are run for 40000
bargaining games (400 generations). Results are averaged over the last 1000 bargaining
games of an experiment, and over 30 experiments, accounting for random settings such
as the number of participating buyers and the buyer’s preferences.

Figure 3 compares—for a break off probability of (a) 0% (on the left) and (b) 1% (on
the right)—the obtained fraction of the total seller surplus for different seller threshold
strategies and buyer discount factors (buyers have equal discount factors). We define
the seller surplus of a bilateral negotiation as the seller’s maximum feasible utility, i.e.,
when the buyer offers her minimum threshold value and the offer is Pareto-efficient.
As shown in Fig. 3, the fixed threshold strategy (1) is able to extract around 75% of
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Fig. 3. Seller’s obtained fraction of total surplus, with (a) 0% (on the left) and (b) 1% (on the
right) break off probability, using 5 threshold strategies: (1) fixed threshold, (2) time-dependent
threshold, (3) responsive threshold, (4) combined (3) and (1), and (5) combined (3) and (2)

the seller surplus. The outcomes are relatively independent of the break off probability;
this is because almost all deals will be closed in the first or second round (the average
round of agreement lies between 0.14 and 0.24 in case of time pressure). Note that these
outcomes are independent of the discount factor. Clearly, the fixed threshold strategy is
unable to benefit from the buyers’ time pressure.

The time-based threshold strategy (2), on the other hand, shows that higher profits
can be obtained if the threshold changes over time, see Fig. 3a. Buyers with a high valu-
ation will purchase relatively early, since waiting for a better deal does not compensate
the loss due to time discounting. Buyers with a low valuation, on the other hand, have
the incentive to reach an agreement in a later stage if they can get a better price for
it. This way the seller can indirectly discriminate between buyers with different valua-
tions and time pressures. The performance of the time-based threshold strategy (2) is,
however, vulnerable to an increase in the bargaining break off probability (see Fig. 3b).

Note that with no time discounting (i.e., when δ = 1) the fixed threshold strategy
performs better. This is due to the difference in strategy complexity: only a single value
needs to be optimized in case of a fixed threshold, whereas an entire function (encoded
by 4 values) needs to be learned in case of the time-based threshold. This is clearly
more difficult, especially within a dynamic environment with learning buyers.

Outcomes using the responsive threshold bargaining strategies (see Fig. 3 (3),(4),
and (5)) show an impressive increase in the fraction of surplus when buyers are impa-
tient. If the time pressure becomes sufficiently high, the seller obtains almost the entire
surplus. Even for lower time pressure, results are much better for the seller compared
to the fixed and time-based threshold strategies. The consequence of increasing the bar-
gaining break off probability from 0% to 1% is that buyers’ time pressure needs to
be a bit higher before the threshold strategies will dominated the other strategies and
the maximal attainable performance drops a bit. This drop in performance is, however,
mainly caused by lower sales due to the premature departure of customers; thus the
seller’s bargaining position does not change fundamentally.

For the case of no or very low time pressure, the results also show that simple
auction-like mechanisms such as the responsive threshold strategy are not sufficient in
case of unlimited supply. Without competition between buyers, the market price goes



140 E.H. Gerding, D.J.A. Somefun, and J.A. Han La Poutré
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to cost level, resulting in a zero surplus for the seller. This problem can be resolved by
combining the responsive threshold strategy with an adaptive reserve value. As shown
in Fig. 3, this results in very good outcomes, even if buyers are very patient. This makes
the combined strategy very versatile. We note that these outcomes also generalize to
settings where buyer types have different time preferences, assuming that buyers with
higher valuation have a higher time pressure. The outcomes are not shown here due to
space limitations.

The mean (in)efficiency of the obtained bargaining results is depicted in Fig. 4. The
inefficiency is measured as the seller’s maximum Pareto-improvement of a given out-
come divided by the seller’s actual utility plus the improvement. The outcomes show
low inefficiencies for all strategies (the highest inefficiency is around 2.7% of the total
utility). However, the responsive threshold strategies result in relatively the most Pareto-
efficient deals. Unlike the other strategies, the responsive strategies set the threshold ex-
actly to the best offer. Since this is the buyer’s best offer, it is already quite efficient. In
case of the other strategies, however, the utility of the offers usually exceed the seller’s
threshold, and the seller first needs to map the buyer’s offers to the right utility level
when making counter offers. This mapping results in additional inefficiencies of the
outcomes. Even with a reasonably simple strategy for determining the relative magni-
tude of the attribute values, already good results are found. The Pareto-efficiency is ex-
pected to improve even further by incorporating more advanced strategies as described
in e.g. [7,6,8,9]. This is however left for future work.

4.3 Bargaining Revisited

A possible strategy of the buyer agent is to bid very low, and then accept the counter
offer of the seller. Such a strategy could be beneficial in case the seller’s counter offer is
influenced by the buyers’ offers, as with the responsive threshold strategies. This could
then result in low profits for the seller. To see if indeed buyers benefit from such a strategy,
the strategy representation for buyers was extended by using two separate functions: one
produces the threshold for determining the utility level of the offers and the other function
determines the threshold for accepting or rejecting the seller’s offers (see Section 3.2).
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Even with separated function, however, the responsive threshold strategy performs very
much in favor of the seller (as shown by the results). This occurs because the counter
offer is delayed by the seller whenever offers fall below the (seller’s) threshold, hence
providing the buyers with an incentive to try and get an agreement without delay.

5 Concluding Remarks

In this paper, we consider strategies for a seller agent who negotiates with many buy-
ers simultaneously in a bilateral fashion over multiple interdependent attributes. These
strategies respect a notion of fairness such that buyers are treated similarly. An impor-
tant aspect of the developed strategies is their ability to benefit from impatient buyers
that prefer early agreements. Buyers can have different valuations and time preferences.
A buyer’s actual valuation and time preference is only known to himself (i.e., a buyer’s
type constitutes private information).

The strategies introduced determine three aspects: a threshold, multi-attribute offers
with a utility level corresponding to the threshold, and a scheme for determining when
to respond. Five different threshold strategies for the seller agent are evaluated and
compared: (1) fixed threshold, (2) time-dependent threshold strategies, (3) responsive,
(4) responsive with fixed reservation value, and (5) responsive with time-dependent
reservation value. The last two strategies are actually a combination of the responsive
threshold strategy with the first two strategies.

We use an evolutionary simulation to analyze the performance of the different strate-
gies when the buyers and seller bargain over two interdependent attributes. The buyers’
bargaining strategies adapt and learn through the use of an evolutionary algorithm (EA).
The seller’s strategies (1) and (2), and the combined strategies (4) and (5) also adapt and
learn using an EA. The responsive threshold strategy (3), on the other hand, determines
the threshold value based exclusively on the offers received by the buyers, and does not
require any learning.

The outcomes show that bilaterally exchanging multiple offers combined with a ran-
dom offer generation mechanism suffices for closely approximating Pareto-efficiency.
Furthermore, given a small probability (per negotiation round) of a customer breaking
of the negotiations the responsive threshold strategies appear to be very successful in
utilizing time pressure and consequently extract a very high share of the surplus. For
sufficiently high time pressure, the seller obtains almost all surplus, indicating that buy-
ers submit and/or accept offers close to their reservation value. Thus buyers self-select
to pay their valuation, while the bargaining outcomes respect our notion of fairness.
The results also show superior performance of the combined strategies (4 and 5) com-
pared to the auction-inspired strategy (3), in case some or all buyers have very little
time pressure. In other words, the combined strategy is very versatile.
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8. Ehtamo, H., Hämäläinen, R.P.: Interactive multiple-criteria methods for reaching pareto
optimal agreements in negotiations. Group Decision and Negotiation 10 (2001) 475–491

9. Somefun, D., Gerding, E., Bohte, S., Poutré, J.L.: Automated negotiation and bundling of
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Abstract. Supply chains are a current, challenging problem for agent-
based electronic commerce. Motivated by the Trading Agent Competi-
tion Supply Chain Management (TAC SCM) scenario, we consider an
individual supply chain agent as having three major subtasks: acquiring
supplies, selling products, and managing its local manufacturing process.
In this paper, we focus on the sales subtask. In particular, we consider the
problem of finding the set of bids to customers in simultaneous reverse
auctions that maximizes the agent’s expected profit. The key technical
challenges we address are i) predicting the probability that a customer
will accept a particular bid price, and ii) searching for the most profitable
set of bids. We first compare several machine learning approaches to es-
timating the probability of bid acceptance. We then present a heuristic
approach to searching for the optimal set of bids. Finally, we perform ex-
periments in which we apply our learning method and bidding method
during actual gameplay to measure the impact on agent performance.

1 Introduction

Supply chains are a current, challenging problem for agent-based electronic com-
merce. One problem commonly faced by agents acting in supply chains is that
of negotiating with customers in order to sell goods. Such negotiations are often
handled through reverse auctions in which sellers submit sealed bids in response
to requests for quotes (RFQs) from customers. This situation becomes particu-
larly difficult when sellers must bid in multiple auctions simultaneously, because
an agent cannot await the outcome of one auction before bidding in another.
When deciding which auctions to bid in and what bids to place, an agent with
limited resources must be able to judge and balance the competing risks of not
winning enough auctions and of winning too many. In the former case, it is un-
able to fully utilize its resources towards profitability; in the latter, it will be
unable to meet its obligations to customers.

The Trading Agent Competition Supply Chain Management (TAC SCM)
scenario [1] provides a perfect testbed for the study of this problem. In TAC
SCM, agents competing as computer manufacturers must handle three basic
subtasks: acquiring components, managing a local manufacturing process, and
selling assembled computers to customers. Agents receive incomplete information
about the state of the game and have a limited amount of time in which to make
decisions, resulting in a challenging competition. The problem studied in this
paper is motivated by our work on TacTex [2], the third place entry from the
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first TAC SCM competition. From our experience, we have identified the sales
subtask as the most crucial aspect of the TAC SCM scenario.

In this paper, we focus on the problem of determining the optimal set of bids
for an agent to make in response to RFQs for computers received from customers.
The key technical challenges we address are i) predicting the probability that
a customer will accept a particular bid price, and ii) searching for the most
profitable set of bids.

The remainder of this paper is organized as follows. In Sect. 2 we give a brief
summary of the TAC SCM scenario and provide information on related work. We
give a complete description of the problem we are solving in Sect. 3. In Sect. 4
we present a comparison of several machine learning approaches to estimating
the probability of bid acceptance. We describe a heuristic approach to finding
an optimal set of bids in Sect. 5. In Sect. 6 we measure the impact of learning on
agent performance by performing controlled experiments involving actual TAC
SCM games. Sect. 7 proposes directions for future work and concludes.

2 Background

In this section, we give a brief summary of the TAC SCM scenario, emphasizing
the parts that are most relevant to the sales subtask, and provide information
on related work.

2.1 The TAC SCM Game

In a TAC SCM game [3], six agents act as computer manufacturers in a simulated
economy that is managed by a game server. The length of a game is 220 simulated
days, with each day lasting 15 seconds of real time. At the beginning of each day,
agents receive messages from the game server with information concerning the
state of the game, such as the customer RFQs for that day. Agents have until
the end of the day (i.e. < 15s) to send messages to the server indicating their
actions for that day, such as bids on RFQs. The game can be divided into three
parts: production and delivery, component supply, and computer demand.

In this paper, we focus on the computer demand, or sales, aspect of the TAC
scenario. Customers wishing to buy computers send all six agents identical RFQs
consisting of:

– the type of computer desired (1 of 16);
– the quantity of computer desired (1–20);
– the due date (3-12 days in the future);
– a reserve price indicating the maximum amount the customer will pay; and
– a penalty that must be paid for each day the delivery is late. Orders are

canceled on the fifth late day.

Reserve prices range from 75% to 125% of the base price of the requested com-
puter type, multiplied by the quantity, and penalties range from 5% to 15% of
the reserve price. The base price of a computer is equal to the sum of the base
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prices of its parts [3]. Agents respond to the RFQs by making offers to sell at a
certain price, with the agent offering the lowest bid on each RFQ winning the
order. Agents are unable to see the prices offered by other agents or even the
winning prices, but they do receive a report each day indicating the highest and
lowest price at which each type of computer sold on the previous day.

The number of RFQs that come from customers depends on the level of
customer demand, represented by a parameter D. The actual number of RFQs
each day is drawn from a Poisson distribution with D as its mean. Fluctuation
in demand is modeled by multiplying D by an amount representing the current
trend each day. This trend follows a random walk, and D is bounded between
80 and 320, with its initial value chosen uniformly randomly from this range.

2.2 Related Work

The problem of predicting the probability of winning an auction with a par-
ticular sealed bid is commonly approached through statistical methods such as
those surveyed in [4]. Such methods often require extensive historical information
about competitors’ past bids and assume a static environment. In TAC SCM,
probabilities vary considerably throughout the game, and almost no information
is available about competitors’ bids while the game is running. A machine learn-
ing approach similar to that used in this paper is developed by [5], which uses
a naive Bayes classifier to predict the probability of a bid winning based on the
bid price, features of the RFQ , and available information about other bidders.

A solution to the TAC SCM bidding problem similar to the one used in this
paper is presented in [6], which uses linear regression on recent bidding results
to form predictions of bid acceptance and then uses stochastic programming to
determine optimal bids. Additional approaches are described in [7] and [8].

3 Problem Specification

We now specify the problem we are addressing in this paper. We consider the
problem of an agent participating in a TAC SCM game that must decide what
bids to place on the RFQs it has received from customers on a given day. The
inputs to the agent’s decision process are the following:

– The set of customer RFQs;
– The agent’s available resources (components and assembled computers in

inventory along with the future production cycles); and
– Information about past auctions (the agent’s knowledge of its own bids and

the reported highest and lowest prices at which each type of computer sold)

Because there are many more computers requested each day than one agent
can produce, the goal of an agent is not to win every auction, but to find the set
of bids that maximizes the agent’s expected profit without committing the agent
to produce more computers than it possibly can. (Viewing TAC as a game, an
agent’s goal should be to maximize its profit relative to the profits of competing
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agents, but due to the difficulty of determining the effect an agent’s bids will
have on other agents, we will assume our agent is only concerned with its own
profit. In a real supply chain, this profit maximization would be the true goal.)
A simple approach to this problem is to predict the highest price at which each
auction could be won and to bid this price on several of the more profitable
auctions, expecting to win each one. A more sophisticated approach involves
considering the possibility of placing high bids on many auctions in hopes of
winning some fraction of them.

This second approach is the one used by TacTex, our agent in the first TAC
SCM competition, and is the approach that is considered in this paper. An agent
implementing this approach has two requirements: the ability to form estimates
of the probability of winning an auction as a function of the bid price, and
a means of using these estimates to find the set of bids that maximizes the
agent’s expected profit. We consider these two agent components separately in
the next two sections. In Sect. 4, we experiment with different machine learning
approaches to predicting the probability of bid acceptance, and in Sect. 5, we
present a heuristic approach to the problem of bid selection.

4 Learning Auction-Winning Probabilities

Predicting the probability of winning an auction in TAC SCM is a challenging
problem for three main reasons: (i) agents receive very limited information on
auction results, (ii) no two auctions are the same due to the differing attributes
of each RFQ, and (iii) winning prices can fluctuate rapidly due to changing game
conditions. As a result, an approach based on analyzing past auction results from
the current game is unlikely to yield accurate predictions. We therefore turn to
machine learning methods using training data from many past games.

The problem we are trying to solve can be viewed as a multiple regression
problem. This could be solved by using a regression learning algorithm to learn
the probability of winning an auction as a function of factors including the bid
price. We instead follow a modified approach used by [9] to solve a similar condi-
tional density estimation problem from a different TAC scenario. This approach
involves dividing the price range into several bins and estimating the probability
of winning the auction at each bin endpoint. A post-processing step converts
the learned set of probabilities to a probability density function by interpolating
between bin endpoints and enforcing a monotonicity constraint that ensures that
probabilities decrease as prices increase. In this method, a separate predictor is
trained for each endpoint to predict the probability of winning at that point. The
concept to be learned by each predictor is therefore simpler than the concept
that would be learned if we used a single predictor for all prices. We leave an
empirical comparison with the latter approach for future work.

In this section we focus on the task of training these individual predictors.
We describe the format of the training data, compare the effectiveness of several
learning algorithms, and then look at the impact that the choice of training data
has on the predictions. It is important to note that training is done off-line, so
the game’s time constraints are not a factor.
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4.1 Training Data Format

The data for our experiments is taken from the results of the semifinal and final
rounds of the first TAC SCM competition held in August 2003. Winning bids
for customer RFQs can be obtained from game logs made available immediately
after each game terminates. Several hundred thousand RFQs were issued over
the course of the games, providing ample data for training and testing.

A training instance is created for each RFQ. The 23 attributes included in
each instance reflect the details of the RFQ it represents, along with the informa-
tion available to agents at the time about the level of demand in the game and
the recent prices for which the requested type of computer has been sold. Each
instance contains the current date; the quantity, penalty, due date, and reserve
price for the RFQ; and the highest and lowest prices at which the requested
computer type was sold over the past five days. The additional attributes pro-
vided about customer demand give a picture of how the daily number of RFQs
has varied over the course of the game. All monetary values are expressed as a
fraction of the computer’s base price.

A separate predictor is trained for each price point x at which we want to
predict the probability of winning an auction, where x is expressed as a fraction
of a computer’s base price. For a given value of x, each auction is labeled with
a 1 if the winning bid was greater than x and with a 0 otherwise. Instances
representing RFQs receiving no bids are labeled with a 1 if x is less than or
equal to the reserve price.1

4.2 Algorithm Comparison

We first performed an experiment comparing the effectiveness of using several
different regression learning algorithms to train predictors: neural networks (with
a single hidden layer and using backpropagation), M5 regression trees, M5 re-
gression trees boosted with additive regression (which successively fits a new base
learner to the residuals left from the previous step), decision stumps (single-level
decision trees) boosted with additive regression, J48 decision trees, J48 decision
trees boosted with AdaBoost, and BoosTexter. BoosTexter [10] is a boosting
method that was originally designed for text classification and is the algorithm
used in [9]. It uses decision stumps as the base learner and a form of AdaBoost to
weight each training instance between rounds of training, outputting a weighted
sum of the learned decision stumps. Other algorithms we considered were sup-
port vector machines, naive Bayes, and k-nearest neighbors, but these did poorly
in initial testing. For all algorithms other than BoosTexter, we used the imple-
mentations provided in the WEKA machine learning package [11], using default
parameters. Informal attempts at tuning these parameters did not appear to
significantly affect performance.

For comparison, we also include the results obtained from using a simple
heuristic predictor that gives reasonably good results. For each of the past five
1 Note that this formulation represents the standpoint of a seventh agent wanting to

know the probability that none of the other six agents would place a bid below x.
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days, the predictor forms a uniform density function on the interval between the
highest and lowest prices reported for the requested computer type. A weighted
sum of these density functions, with those from more recent days receiving more
weight, is then used as a probability density function from which estimates of
bid acceptance are taken.

In our experiment we evaluated each of the learning algorithms on a data set
taken from the final round of the competition. We used cross-validation, meaning
that training and test data came from the same games. While the true value of
a probability prediction is the utility gained from using it, determining this in
the context of a TAC SCM agent is not feasible, and so we instead use root
mean squared error between the predicted probabilities and actual outcomes as
the measure of comparison. We ran separate tests predicting the probability of
winning an auction at several different values of x. The results of three 10-fold
cross-validations with x = 0.7 are presented in Fig. 1 and are similar to results
for other values of x.
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Fig. 1. Results for x = 0.7

With a large number of train-
ing instances, the tree-based methods
clearly had the best performance, fol-
lowed by BoosTexter. The errors of
the non-tree-based methods level off
after a limited number of training in-
stances, while the errors of the tree-
based methods continue to decrease
until the point at which all available
training data is used. For training sets
of size 200,000 and 370,000, the dif-
ference observed between each pair of
algorithms in Fig. 1 is statistically sig-
nificant at the 95% confidence level.

4.3 Choice of Training Data

In the previous experiment, the training data and test data were taken from the
same set of games, with the same agents participating in each game. This raises
the possibility that the algorithms learned concepts that pertained to specific
games and set of agents but were not applicable in general. This is also unrealistic
in the TAC setting, as an agent could not have predictors trained on data from
the game it is currently participating in. In practice, it is important to know
whether a predictor trained for one set of agents will be reliable in games with
a different set of agents. Our next experiment addresses these issues.

We consider the case of an agent participating in the final round of the
competition. The agent would want to train predictors on the data most relevant
to the situation. At the beginning of the final round, the most relevant data would
likely come from the results of the semifinal round, which contained two brackets
of six agents each. As a result, this data would reflect on both the agents in the
final round and the agents defeated in the semifinal round. After the finals begin,
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the agent would be able to analyze the results of completed games from the finals
and would have the option of retraining its predictors with this new data, either
by itself or in combination with the data from the semifinals.

We performed an experiment comparing the results of training with these
choices of training data. First, we divided the games from the final round into
two halves, labeled finals1 and finals2. We then used finals2 as the test data
for predictors trained on data from different sources: the semifinals, finals1, the
semifinals combined with finals1, and finals2 (using cross validation). The results
for M5 trees and BoosTexter, the top two performing algorithms, are shown in
Figures 2 and 3. Again, x = 0.7. The learning curves are labeled with the source
of data used for training.

When the predictors were trained on data other than finals2, the performance
gap between M5 trees and BoosTexter disappeared, and the performance of
the other tree-based methods, even boosted M5 trees, fell behind. The errors
of the tree-based methods no longer continued to decrease as more training
instances were used, and sometimes the error increased, as observed in Fig. 2
when data from the semifinals was used for training. This suggests that the strong
performance of the tree-based methods in the first experiment was largely due
to their ability to learn game-specific factors that do not generalize well. While
BoosTexter appears to achieve somewhat lower errors than M5 trees in this
experiment, further testing on different game scenarios would need to be done
to determine whether this is the case in general.

As we expected, the predictors trained on data from finals2 outperformed the
predictors trained on data from different games. Still, the performances of the
latter were better than that of the heuristic. The predictors trained on finals1
performed better than those trained on the semifinals, confirming that more
relevant training data produces better results. Somewhat surprisingly, the pre-
dictors trained on the combination of finals1 and the semifinals performed better
than the predictors trained on finals1 only. It may be that a predictor trained on
data from a variety of sources will generalize the best to a new situation, even
if some of the training data is less relevant for the new situation.

The results of these experiments suggest that with the right choice of learning
algorithm and training data, we can learn the probability of winning an auction
reasonably well. However, to measure the value of our predictions, we need to
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use them as the input to a method of selecting bids in actual TAC games. We
present such a method in the next section, and then experimentally evaluate its
performance in Sect. 6.

5 Bid Selection

We now consider the problem of bid selection. Recall that each day, customers
send roughly 80-320 RFQs to all agents simultaneously, with each RFQ request-
ing a specific type and quantity of computer by a certain date. For each RFQ,
the agent that bids lowest wins the order. In this section, we cast the bidding
problem as an optimization problem and describe a heuristic approach to finding
the optimal set of bids to offer in response to a single day’s customer RFQs.

5.1 Problem Formulation

An agent’s goal in selecting bids should be to maximize its total expected future
profit. This value depends on the unknown strategies of competing agents, how-
ever, and the exact computation of this value would likely be intractable even if
these strategies were known. As a result, we present a somewhat myopic agent
that aims to maximize its profit only on computers due over the next 12 days
(the range of due dates for computers requested on a given day) and that makes
some simplifying assumptions. These assumptions are:

1. All computers delivered over the next 12 days will come from computers and
components that are already in inventory or expected to be delivered during
that period.

2. After the next 12 days, the average number of each computer type ordered
from the agent per day will remain the same as the average over the past
few days.

3. For the rest of the game, the agent will purchase only enough components
to meet the need from the expected production in Assumption 2. The prices
of these components will be the same as recently observed prices.

4. Computers held in inventory at the end of 12 days are of no value.
5. The agent is able to accurately predict the probability of winning an order

given the bid price.

Assumption 1 means that our agent has a fixed set of resources to work
with when selecting bids. This is a reasonable assumption due to the fact that
our agent (and many other agents from the competition) tries to carry a large
component inventory and tends to place long-term rather than short-term com-
ponent orders. Because the prices paid for components in inventory are sunk
costs, our agent will only consider replacement costs when determining the cost
of producing a computer. These costs can be determined from Assumptions 2
and 3 by projecting future component use, deciding whether the components
used over the next 12 days will need to be replaced, and determining how much
this will cost per component. If the current inventory of a component exceeds the
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projected use, then that component’s replacement cost will be zero. Assumption
4 means that our agent should be willing to use all computers in inventory and
all upcoming production cycles for computers that will be delivered over the
next 12 days. Assumption 5 simply tells us that our agent has access to the bid
acceptance functions we tried to learn in the previous section.

As a result of these assumptions, our agent is essentially pretending that it
is acting in a static environment, and this could lead to suboptimal behavior
if future game circumstances change. For example, if computer prices are cur-
rently low due to low demand, but the trend of customer demand is increasing,
then it might be wise to hold on to computers in inventory for later sale, vio-
lating assumption 4. The ability to more accurately predict the future values of
components and computers would be valuable, but we leave this to future work.

The profit our agent obtains over the next 12 days depends not only on the
RFQs being bid on on the current day, but also on RFQs that will be received
on later days for computers due during the period. If we were to ignore these
future RFQs when selecting the current day’s bids, our agent might plan to use
up all available production resources on the current RFQs, leaving it unable
to bid on future RFQs. One way to address this issue would be to restrict the
resources available to the agent for production of the computers being bid on
currently. This is the method used by [6]. We instead take the approach of
predicting the RFQs that our agent will receive for computers due during the
period, and coming up with bids for these RFQs at the same time as the actual
RFQs from the current day. Future RFQs are randomly generated according
to the parameters given in the game specification and our current estimate of
the level of customer demand and its trend. This has the effect of causing our
agent to decide which resources to reserve for future RFQs, and limited testing
suggests that our agent performs better when using this method than when we
explicitly restrict the resources available.

5.2 Optimization Method

We now have an optimization problem with the following inputs:

– The agent’s current computer orders
– The resources available to the agent over the next 12 days: production cy-

cles, computers and components currently in inventory, and expected future
deliveries of components

– A cost associated with each computer representing the expected replacement
costs of its components

– A set of RFQs for computers due over the next 12 days, including both the
current day’s actual RFQs and predicted future RFQs.

Our goal is to find the set of bids that maximizes expected profit on these RFQs
and existing orders. Those bids representing actual RFQs for the current day
will then be offered to customers.

We make the assumption that we will always want our agent to fill existing
orders if possible, and so the agent begins by scheduling the production necessary
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to fill these orders. This leaves our agent with a reduced set of resources and
means that it only needs to concern itself with the expected profit from RFQs.

If we were considering only a single auction and had no resource constraints,
the expected profit resulting from a particular bid price would be:

Expected profit = P (order|price) ∗ (price − cost) (1)

The optimal bid would be the value that maximized this quantity.
Computing the expected profit from a set of bids when resource constraints

are considered is much more difficult, however, because the profit from each
auction cannot be computed independently. For each possible outcome of the
auctions in which it is not possible to fill all orders, the profit obtained depends
on the agent’s production and delivery strategy. For any nontrivial production
and delivery strategy, precise calculation of the expected profit would likely
require separate consideration of a number of possible auction outcomes that is
exponential in the number of auctions. If we were guaranteed that we would be
able to fill all orders, we would not have this problem. The expected profit from
each auction could be computed independently, and we would have:

Expected profit =
∑

i ε all auctions

P (orderi|pricei) ∗ (pricei − costi) (2)

Our bidding heuristic is based on the assumption that the expected number
of computers ordered for each RFQ will be the actual number ordered. In other
words, we pretend that it is possible to win a part of an order, so that instead
of winning an entire order with probability p, we win a fraction p of an order
with probability 1. This assumption greatly simplifies the consideration of filling
orders, since we now have only one auction outcome to consider, while leaving
the formulation of expected profit unchanged. As long as it is possible to fill
the partial orders, (2) will hold, where the probability term now refers to the
fraction of the order won. It would appear that this approach could lead to
unfilled orders when the agent wins more orders than expected, but in practice,
this is not generally a problem. Most of the RFQs being bid on are the predicted
RFQs that will be received on future days, and so the agent can modify its future
bidding behavior to correct for an unexpectedly high number of orders resulting
from the current day’s RFQs. The agent can also set aside a small number of
completed computers in inventory to serve as a buffer to prevent penalties in
case any problems remain. When using this bidding strategy, our agent indeed
tends to have very few late or missed deliveries.

By using this notion of partial orders, we can transform the problem of bid
selection into the problem of finding the most profitable set of partial orders that
can be filled with the resources available. Although this problem lends itself to
standard optimization methods, our choice of method is constrained by the limit
of 15 seconds per simulated game day and by the size of the problem (there may
be over a thousand RFQs to consider). We use a greedy production scheduler
that tries to utilize production resources as profitably as possible. All bids are
initially set to be just above the reserve price, which means we begin with no
orders. The production scheduler then chooses an RFQ and an amount to lower
its bid by, resulting in an increased partial order for that RFQ. The scheduler
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simulates filling this increase by scheduling its production as late as possible,
taking completed computers from inventory if production is not possible. This
process is repeated until no more production is possible or no bid can be reduced
without reducing the expected profit.

Because we are working with resource constraints, the goal of the greedy
production scheduler at each step is to obtain as large an increase in profit as
possible while expending as few production resources as possible. To illustrate
how this is done, consider Figures 4, 5, and 6. Fig. 4 represents the predicted
probability of winning an auction as a function of the bid price, or alternatively,
the fraction of the auction we assume we will win at each bid price. Fig. 5 shows
the expected profit at each price, found using (1). Now suppose that our current
bid is 1500, and we are considering lowering this bid. We would like to find the
bid decrease that produces the largest increase in profit per additional computer
ordered. This quantity is equal to (Profit(x)−Profit(1500))/(Probability(x)−
Probability(1500)) for x < 1500 and is graphed in Fig. 6. From the graph, we
can see that the optimal decision is to lower the bid to about 850. At each step,
the production scheduler performs this analysis to find the bid reduction that
will produce the largest increase in profit per additional computer for each RFQ,
and chooses the RFQ for which this value is the largest.

In many cases, the most limited resource is production cycles. In such cases,
the increase in profit per cycle used is a better measure of the desirability of a
partial order than the increase in profit per additional computer, so we divide the
latter quantity by the number of cycles required to produce the type of computer

Table 1. The bidding heuristic

– For each RFQ, compute both the probability of winning and the expected profit as a function
of price

– Set the bid for each RFQ to be just above the reserve price
– Repeat until no RFQs are left in the list of RFQs to be considered:

• For each RFQ, find the bid lower than the current bid that produces the largest increase
in profit per additional computer ordered (or per additional cycle required during periods
of high factory utilization)

• Choose the RFQ and bid that produce the largest increase.
• Try to schedule production of the partial order resulting from lowering the bid. If it cannot

be scheduled, remove the RFQ from the list.
• If the production was scheduled, but no further decrease in the bid will lead to an increase

in profit, remove the RFQ from the list.
– Return the final bid for each RFQ.
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requested by the RFQ and use the resulting values to choose which RFQ should
be considered next. We consider cycles to be the limiting factor whenever the
previous day’s production used more than 90% of the available cycles to produce
computers used to fill orders (as opposed to computers produced using spare
cycles in order to build up inventory).

The range of possible bid prices is discretized for the sake of efficiency. Even
with fairly fine granularity, this bidding heuristic produces a set of bids in signif-
icantly less time than the 15 seconds allowed per simulated game day. Attempts
to use local search methods to improve the bids found yielded almost no increase
in profit, suggesting at the very least that our greedy method tends to find local
minima. The complete bidding heuristic is summarized in Table 1.

6 Agent Performance

In this section, we evaluate the effectiveness of our learning approach and bidding
method when used as part of a complete agent in TAC SCM gameplay. We do
this through a series of experiments in which agents using different combinations
of bidding methods and prediction methods play against each other repeatedly.

6.1 Agent Design

For each agent, production and delivery are handled by a greedy production
scheduler that gives near-optimal performance in practice. In order to isolate
the effects of bidding, we modified the game settings to allow each agent to re-
ceive an effectively unlimited quantity of each component on the 15th game day
at no cost, eliminating the need for a strategy for purchasing components from
suppliers. This is not entirely unrealistic, as many agents in the competition
actually ordered the majority of their components on the first game day [12].
Agents were only allowed to carry up to 200 of each type of computer in inven-
tory, to prevent them from using their limitless components to build up large
computer inventories during periods of low customer demand. The effect of this
limitation was to increase the responsiveness of computer prices to changes in
demand, creating a more dynamic and interesting game scenario.

The agents differ in the bidding methods used and the predictions of bid
acceptance probability. The bidding methods used are

– Bidder: The bidding method presented in Sect. 5.
– OldBidder: A previously developed hill climbing bidding method [2].

and the bid acceptance prediction methods are

– Learning: Learning as described in Sect. 4.
– Heuristic: The heuristic described in Sect. 4.2.
– OldHeuristic: A previously developed prediction heuristic [2]. Testing on game

data has shown this heuristic to be less accurate than Heuristic.

OldBidder and OldHeuristic are taken from TacTex, our entry in the 2003 TAC
SCM competition, and are described in detail in [2]. Each of the six combinations
of bidding methods and prediction methods is used by one agent.
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6.2 Experimental Setup

Three rounds of 30 games were played between the six agents. During the first
round, the agents labeled as using Learning actually used the same heuristic
as Heuristic. The game logs from the first round were then used to train sets
of predictors to be used by the Learning agents in the second round. For both
agents, we trained a separate predictor for each of the 26 price points between
0 and 1.25 times the base price spaced at an interval of 0.05, using BoosTexter
as the learning algorithm and using 10% of the available data (about 100,000
instances). Because each learning agent is trying to outbid only the other agents
and not itself, its own bids were ignored when determining the winning bid for
each training instance. The functions mapping bids to probabilities of acceptance
are created from the 26 predictions by enforcing a monotonicity constraint as
described in [9], with the added step of setting all probabilities for bids above
the reserve price to 0. A second round of games was then played.

In the third round, the Learning agents used a set of predictors that had been
trained on the logs from the semifinal and final rounds of the 2003 TAC SCM
competition. The purpose of this was to determine how well the predictors would
generalize to a different set of agents.

6.3 Results

The results are presented in Table 2. The average relative score of each agent
is given along with the standard deviation. An agent’s relative score in a game
is its score minus the average score of all agents for that game. The average
score over all agents and games in each round was around $80 million. Because
all agents were initially given sufficient components to last the whole game, no
component costs are included in any of the scores presented.

Table 2. Average relative score (in millions)

Agent Relative Score
Round 1 Round 2 Round 3

Bidder/Learning 6.10 ± .28 9.04 ± .3 6.49 ± .73
Bidder/Heuristic 6.13 ± .28 2.95 ± .42 5.20 ± .57
Bidder/OldHeuristic 2.2 ± .30 -.31 ± .42 1.37 ± .40
OldBidder/Learning -4.17 ± .22 1.60 ± .55 -1.80 ± .70
OldBidder/Heuristic -4.21 ± .24 -5.87 ± .30 -4.54 ± .53
OldBidder/OldHeuristic -6.09 ± .39 -7.41 ± .48 -6.72 ± .46

From the results of the
first round, we can see that
agents using Bidder outper-
form the agents using OldBid-
der, and that for each bidding
method, agents using Heuris-
tic outperform agents using
OldHeuristic. This is the ex-
pected result.

The results of the second
round show exactly what we

had hoped to see: using learning significantly improved agent performance. Bid-
der/Learner outscored Bidder/Heuristic in all but one game and by an average
margin of $6 million.

In the third round, the agents using Learning still showed a performance
improvement, but by a smaller margin. Considering that the predictors used by
Learning were trained on games involving a completely different set of agents,
and a somewhat different game scenario (i.e., a limited component supply), this
result is very promising. In actual competition, we might not have access to
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games involving only the agents we are competing against, and this experiment
suggests that learning could still be successfully applied in such a case.

7 Future Work and Conclusion

In this paper, we considered the problem faced by an agent acting in a supply
chain that must bid in simultaneous reverse auctions to win orders from cus-
tomers. Using TAC SCM as a test domain, we presented a learning approach
to the task of predicting the probability of bid acceptance, and we presented a
heuristic bidding method that uses these predictions. A comparison of learning
algorithms showed that M5 regression trees and BoosTexter result in similar
prediction accuracy when testing and training data come from separate games.
When used as part of a complete agent, learned predictors were shown to provide
a significant improvement in performance over heuristic predictors.

One important result demonstrated was that the learned predictors gener-
alize well to new situations, both in terms of prediction accuracy and of agent
performance. This gives us hope that our learning approach can be used success-
fully in competition when facing different sets of agents or agents that change
their behavior over time.

There are several possible ways in which predictions could be improved. The
results of Sect. 4.3 suggest that acquiring data from a variety of situations might
aid in training a more robust predictor. Further experiments could determine
the best combinations of data for an agent to use. Also, additional information
available to an agent could be included as features, such as knowledge of the
availability and prices of components. Finally, an agent could make use of its
knowledge of auction results during a game to make on-line improvements to
its predictors. Boosting-based predictors would lend themselves well to this ap-
proach, since making incremental modifications to the existing predictors would
be straightforward.

The heuristic bidding method presented appears to work well, but needs to
be made less myopic. This could be done by developing better estimates of the
future values of components and computers in inventory, in order to allow more
informed decisions of whether to hold on to them for later use.
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Abstract. In many two-sided search applications, autonomous agents can
enjoy the advantage of parallel search, powered by their ability to handle
an enormous amount of information, in a short time, and the capability
to maintain interaction with several other agents in parallel. The adoption
of the new technique by an agent suggests a reduction in the average cost
per interaction with other agents, resulting in an improved overall utility.
Nevertheless, when all agents use parallel search in Multi-Agent Systems
(MAS) applications, the analysis must take into consideration mainly equi-
librium dynamics which shape their strategies. In this paper we introduce
a dual parallel two-sided search model and supply the appropriate analysis
for finding the agents’ equilibrium strategies. As a framework application
for our analysis we suggest and utilize the classic voice communication part-
nerships application in an electronic marketplace. By identifying the spe-
cific characteristics of the equilibria, we manage to supply efficient means
for the agents to calculate their distributed equilibrium strategies. We show
that in some cases equilibrium dynamics might eventually drive the agents
into strategies by which all of them end up with a smaller expected utility.
Nonetheless, in most environments the technique has many advantages in
improving the agents expected utility.

1 Introduction

Agents’ search for partners is an inherent process in many MAS applications [15].
A common scenario in partnerships models is where the searching agent is sat-
isfied with only one partner for forming partnership. Typical applications of this
type include buyer-seller [2], peer-to-peer media exchange, dual-backup services
[13], etc. In these applications each potential partnership suggests a different
utility for the agent. The agent can’t a-priori evaluate the expected utility from
a partnership with any of the other agents, though it can evaluate the overall
utility distribution. Learning about the expected utility from a partnership with
a specific agent is possible by interacting with this agent. This process involves
the consumption of some of the agent’s resources (e.g. cost of search). Thus the
agent’s main challenge in such an application is to find a strategy for determining,
at each stage of its search, whether to try and partner with one of the formerly
interacted agents, or resume its search. Partnering with an agent will yield an
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immediate benefit, while resuming the search might result in a better partnership
(though inducing a further search cost). The search process is considered to be
two-sided, as all agents are engaged in search, and a partnership between two
agents will be formed only if both agents commit to it.

Traditionally, two-sided search models [3] consider humans engaged in dual
search activities (marriage market, for instance) with pure sequential search
strategies (where each party samples and evaluates one potential partner at a
time). However, the advantages of agents in filtering and processing information,
as well as their improved parallel interaction capabilities (in comparison to hu-
mans), suggests an improved two-sided search technique, by which the agents
sample and assess several potential partner agents, during a search stage, in par-
allel. This is mostly beneficial when parts of the search costs do not necessarily
depend on the number of potential partner agents sampled. In this case the par-
allel search reduces the average search cost per sampled potential partner.

Our goal in this paper is to present and analyze a dual parallel two-sided
search model, where all agents in the electronic marketplace (or any other MAS
environment) use the parallel search. The transition from one agent using the new
technique into a dual usage requires a complete understanding of the dynamics
which drive the agents’ strategies towards a stable equilibrium. An important
output of the analysis is an algorithm that significantly simplifies the process of
extracting the equilibrium strategies. This type of algorithm is extremely valu-
able for both agents and their developers. As part of the discussion we show that
in many cases the dual parallel search may yield a better utility for the agents,
though in some cases the effect of the proposed search technology is an equilib-
rium, with lower expected utility for each agent. These are important inputs for
market makers, when considering the integration of the parallel search techniques
in the agents they supply to their customers.

As a framework application for our analysis we use an eCommerce environ-
ment where agents represent telephony service providers. Consider, for example,
a service provider, serving a specific geographic location, having long term for-
mal partners (other service providers) in various geographical destinations, with
whom it has termination agreements1. At any time the service provider can pro-
duce a short term forecast for its unused bandwidth. In most cases, the amount of
such bandwidth, and the relatively short period the service provider can commit
to, makes the option of selling this remaining bandwidth non-beneficial. Alter-
natively, the service provider can use this bandwidth in an exchange process for
reducing its termination costs. In the latter case, the service provider will create
an agent operating in a designated market, where the other agents represents dif-
ferent service providers, serving different locations. The agent will seek to create
ad-hoc short term partnerships with these agents, to make use of the unexploited
bandwidth on both sides. Once a partnership is formed, each service provider will
route some of its traffic to the remote destinations via the other service provider’s
network, instead of using its costly formal long term termination partners. Similar
application of exchanging unexploited resources, can be found in [13,1].

1 An agreement defining a service provided by an interconnection provider, whereby it
connects a call from a point of interconnection to a network termination point.
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In the telephony communication domain, the benefit that can be obtained
from a given partnership is a function of the Quality of Service (QoS) that can
be guaranteed by such a connection - service providers offer their customers
different tariffs for different levels of services, as defined in a Service Level Agree-
ment (SLA). The key measure for evaluating the Quality of Service is speech
quality. While traditional methods of determining speech quality were based on
subjective tests with panels of human listeners (ITU-T P.800/P.830, [9]), recent
ITU standards [10] suggest automatic prediction of voice quality that would be
given in typical subjective tests. This is done by intrusive end-to-end test calls
(i.e. generating test traffic) and passive monitoring of traffic in strategic locations
along the call route. It is notable, however, that speech quality is not linear, and
as the call traverses the two networks, the quality can not be evaluated simply
as a function of both networks’ separate performances. Thus for the purpose of
evaluating the perceived utility from each potential partnership, an agent needs
to perform a full set of tests (and can’t rely on former tests performed for the
connection of its network with other networks). The costs of these tests represents
the search cost in our model.

At this point the model diverges into two important variants, differing in the
expected utility each partnership member obtains from the partnership. In the
first variant, the utility each of the two agents forming a partnership obtain is
equal. The second variant suggests different utilities for both agents, in a way that
the utility gained by each of the agents will be considered as randomly drawn
from a general distribution (see for example [3]). In the suggested telephony
application there are many factors supporting each of the two variants, such as
the SLAs structure (committing to the quality of both or just one of the inbound
and outbound channels), different tariffs, attractiveness of different geographical
locations, etc. We support both variants throughout the paper.

As we add the ability to interact with several potential partner agents in
parallel, on top of the traditional sequential search model, we need to consider
the search cost structure. The integration of passive monitoring and intrusive test
calls, suggests a fixed and variable components in the cost structure. The fixed
component can be associated with passive testing devices, monitoring all traffic
simultaneously. The variable component is associated with the intrusive end-to-
end test calls. The number of test calls performed is derived from the number of
potential partners evaluated over each search round. Similar applications in which
such dual parallel search can be used include secondary markets for exchanging
remaining resources in those cases where selling them is not the core business of
the organization, or when the overhead for selling them makes it non-beneficial,
and thus an exchange mechanism is used (see [13]).

In the next section we address relevant multi-agent and matching literature.
In section 3 we present the model. An equilibrium analysis and an efficient algo-
rithm for finding the equilibrium strategy are provided in section 4. The incentive
to deviate from the sequential two-sided search towards the parallel search is pre-
sented in section 5. Section 6 compares the two model variants. We conclude and
suggest directions for future research in section 7.
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2 Related Work

The application of agents seeking coalitions with other agents is quite common
in MAS environments and in electronic markets in particular [5,6,2]. A specific
case of such coalitions is the partnerships model where each agent seeks a single
partner [12,15,13]. Different mechanisms for partnering suggest different assump-
tions regarding the agent’s scanning capabilities, ranging from the option to scan
as many agents as needed, through making use of a central matcher or middle
agents [4] and up to a complete distributed process, without the help of a prede-
fined organization or a central facilitator [11]. Our model is of the latter type, and
assumes a distributed environment where each agent needs to invest resources
for interacting with other agents and evaluate the potential partnerships.

The basic concepts of search, can be found in the classical search theory. Here,
various models of one-sided search (assuming no mutual search activities) and
two-sided search were suggested [7,14,3]. While the concept of parallel search
(also known as variable sample sizes) was suggested for the one-sided search [8],
two-sided models always assume a sequential search. Thus the uniqueness of the
suggested model is in allowing all agents to use the parallel method. It is notable
that the transition from the one-sided to two-sided models, when considering
parallel search techniques, involves many complexities, as the equilibrium con-
siderations become the main issue of the analysis2. Additionally, in search theory,
search ”costs” are usually modelled by the discounting of the future flow of gains,
while in MAS environments the total search period is relatively short and utilities
are immediate.

In a recent paper [12] we present an initial analysis of equilibrium in a two
sided search model, where there are two types of searchers (buyers and sellers),
and only one type may use parallel search. We have shown that the adoption of
parallel search by buyers in C2C markets, leads to new equilibrium strategies,
which can significantly improve the utility of the buyers (thus reducing the utility
of the sellers using the sequential search). Nevertheless, our analysis was limited
to the usage of the technique by one side of the interaction, and for the case
where the perceived utilities are different. When all agents can use the parallel
search technique, the problem of evaluating the stability of suspected equilibrium
strategies becomes significantly more complex. The main challenge is in handling
the enormous expansion of the strategy space. In sequential two-sided search the
strategy space is bi-dimensional (having each agent’s reservation value3 on each
2 In one-sided search, the problem can be seen as a simple optimization problem, with

no equilibrium concerns, since the focus is on a single searcher’s decision.
3 As in most search models, in the following sections we show that the agents will use

a reservation value based strategy. The agent will accept all offers that yield a utility
greater than or equal to a reservation value, and reject all those that yield a utility
less than this value. Notice the reservation value of the search strategy is different
than a reservation price usually associated with a buyer or a seller that are not
involved in a search. While the reservation price denotes an agent’s true evaluation of
a specific potential partnership, the reservation value of a search strategy is mainly a
lower bound for accepted partnership, derived from the expected utility optimization
considerations.
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axis), thus each agent’s incentive to deviate from a given strategy, can be checked
along its own reservation value. In our dual parallel search model, each potential
strategy must be compared with all possible combinations of reservation values
and the number of partners sampled over a search round.

3 The Dual Parallel Two-Sided Search Model

Consider an environment populated with numerous agents, seeking to form part-
nerships for their benefit throughout random interactions with other agents. As
suggested in the introduction, the perceived utility for an agent from any sug-
gested partnership with any specific agent, denoted by U , can be seen as ran-
domly drawn from a population with p.d.f. f(U) and c.d.f. F (U), (0≤U <∞).
We assume that agents, while ignorant of the utility obtained by partnering with
specific agents, are acquainted with the overall possible partnership’s utility dis-
tribution. This assumption is common in search models (see [3,14,13,11]).

Integrating the above into the service providers application, we consider each
agent as suggesting a termination service for a standard unit of time and vol-
ume4. Any random interaction between two agents, may yield a partnership for
terminating calls, for the benefit of the two represented service providers. The
utility from such a partnership is expressed in monetary units, as the service
providers’ main concern is revenue.

When using the parallel search, at any stage of its search the agent encoun-
ters N potential partner agents, interested in forming a partnership. This is in
comparison to the traditional sequential two-sided search, where the agent sam-
ples only one other agent at any stage of its search [3]. For each encounter both
agents evaluate the utility from such a partnership (in the telephony application
this will mean testing the perceived connection between the two networks). We
assume this utility is randomly drawn from a similar distribution function for
all agents (either with a similar value or as two different values, according to
the model variant), due to the high number of potential partners and the similar
operational cost structure.

We denote, α and β as the fixed and variable cost components of a search
stage. In the telephony application, these costs are associated with intrusive test
calls and passive monitoring for testing the perceived connections with the N
networks represented by the potential partnering agents. Thus the total search
cost per a search round is α + βN . Notice the values α and β are standard for
all agents, as testing the quality of a connection between two service providers is
conducted in similar methods based on standard testing devices. After evaluating
each of the potential partnerships, each agent will make a decision whether to
commit to one of them. Obviously, each agent is interested in partnering with
the agent with whom the potential partnership will yield the maximum utility. A
partnership will eventually be formed only if both agents are willing to commit to
it. Otherwise the agents will resume their search according to the same process as

4 Notice the agent can consider numerous potential partners as these include service
providers from any geographical location, IXCs, and ISPs supporting VoIP.
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described above. Notice that since each new interaction suggest a new potential
utility, and since the agent may commit only to the best in its sample, deadlocks
will never occur. Since the agents are not limited by a decision horizon and can
control the intensity of their search, and the interaction with other agents does
not imply any new information about the market structure, their strategy is
stationary - an agent will not accept an opportunity it has rejected beforehand.
Thus agents will use a reservation value strategy. The fast parallel interactions
between agents, ensure finding a partner within reasonable time. This, along
with the fact that utilities can be seen as immediate (due to the short partnership
duration) allow us to ignore the influence of a discounting factor when considering
expected utilities. Lastly, notice that as all agents are subject to a similar search
cost, and the perceived utility can be seen as randomly drawn from the same
population, all agents share the same reservation value.

As the search process is two-sided, the main challenge is in finding the equi-
librium strategies. Any set of strategies that can’t guarantee equilibrium stability
will not hold. As suggested in the introduction, we distinguish between two vari-
ants of the above model. The first assumes both agents in a partnership will yield
the same utility, while in the second each agent diversely evaluates the utility it
can gain from a given partnership. Each variant will yield different equilibrium
strategies and thus will differ with the expected utility gained by the agents.

For analysis purposes, we’ll use several notations in the following sections. A
strategy of sampling N other agents over each search round, and acting accord-
ing to a reservation value xN will be denoted (N, xN ). The expected utility of
an agent when using strategy (N, xN ), will be denoted VN (xN ). As the agent is
mainly concerned at each search round with the partnership offering the max-
imum utility in its sample, we will use the random variable UN to denote the
partnership with the maximal utility in an N size sample. The p.d.f. and c.d.f.
of the variable UN will be denoted fN(x) and FN (x), accordingly.

4 Agents Strategies and Equilibrium Dynamics

We start by formulating the expected utility for the agent when using a strategy
(N, xN ), given the strategy (k, xk) used by the other agents in the environment.
In the variant where both agents obtain the same utility from a given partnership
the expected future utility VN (xN ) is:5

VN (xN ) =

∫∞
y=max(xN ,xk) yfN (y)F (y)k−1dy − α − βN∫∞

y=max(xN ,xk) fN(y)F (y)k−1dy
(1)

This can be decomposed into two parts: the conditional expected utility from a
partnership that will be eventually formed, and the aggregated search cost derived
by the number of search cycles. The number of search cycles is geometric and the
probability of success is

∫∞
y=max(xN ,xk) fN(y)F (y)k−1dy. In addition, notice that:

5 Due to space considerations, we include the basic formulation and sketch of proofs.
The extended version of the paper, including the detailed formulation, proofs and
discussions can be found at www.cs.biu.ac.il/ sarne/FullPapers/Dualparallel.pdf.
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FN (x) = FN (x) fN(x) =
dFN (x)

dx
= Nf(x)F (x)N−1 (2)

and thus, substituting (2) in (1) we eliminate the sample maximum notations
from the equation and obtain a function which depends only on the cost structure
α and β and the general distribution function F (x):

VN (xN ) =
N

∫∞
y=max(xN ,xk) yf(y)F (y)N+k−2dy − α − βN

N
∫∞

y=max(xN ,xk) f(y)F (y)N+k−2dy
(3)

Notice that any usage of xN < xk will yield the same utility as using xk. This
is simply because any partnership suggesting a utility lower than this value will
always result in a rejection from the other agent and consequently the continuance
of the search. Similarly, for the variant where both agents obtain different utilities:

VN (xN ) =
(1 − Fk(xk))

∫∞
y=xN

yfN(y)dy − αk − βNk

(1 − Fk(xk))(1 − FN (xN ))
(4)

and by substituting (2) in the above equation we obtain a simpler function. Notice
that unlike the expected utility in (1), here, any change in the reservation value,
xN , including a reduction to a value beyond xk will affect the expected utility.
This is because of the absence of any correlation between the utility an agent
gains from a potential partnership and the probability of being accepted by the
other agent. Thus:

lim
xN→0

VN (xN ) = E[UN ] − αk + βNk

(1 − Fk(xk))
(5)

Except for the above difference, the expected utility curve is quite similar in its
structure for both variants of the model. As the agent increases its reservation
value, and becomes more selective, the utility improvement gained by partnering
with a better partner significantly decreases in comparison to the additional cost
incurred by the increase in the number of search rounds. Thus both variants
satisfy:

lim
xN→∞VN (xN ) = −∞ (6)

4.1 Reservation Value and Expected Utility Function

Having established the behavior of the expected utility function for upper and
lower values of the reservation value, we now show that for both variants of the
model, the expected utility function has a unique maxima.

Theorem 1. When all other agents use strategy (k, xk), an agent’s expected util-
ity function, VN (xN ), when using strategy (N, xN ) is quasi concave in xN with
a unique maxima satisfying:

VN (xN ) = xN (7)
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Sketch of Proof: We present the proof for the variant where both agents obtain
equal utilities from a partnership. The proof for the second variant is similar.
Deriving (3) we obtain:

dVN (xN)
dxN

=
fN (xN)F N+k−2(xN)

(
VN (xN) − xN

)
N

∫ ∞
y=max(xN ,xk) f(y)F (y)N+k−2dy

≡ r(xN)(VN (xN) − xN ) , xN ≥ xk

(8)
A solution for (8) will require VN (xN ) = xN . Note that fN (xN ) > 0 implies
r(xN ) > 0, hence for xN satisfying VN (xN ) = xN :

d2VN (xN )
dxN

2 = r
′
(xN )(VN (xN ) − xN ) + r(xN )(VN

′
(xN ) − 1) < 0 (9)

Thus VN (xN ) is quasi concave with a unique maxima. �
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Fig. 1. Agent’s expected utility

From (1-6) and theorem 1 we can sketch
the graph VN (xN ). The basic structure of the
curve is given in Figure 1, using the uni-
form distribution function and the parame-
ters: N = 3, k = 2, α = 0.05, β = 0.005
and xk = 0.55 (substituted in equations (3)
and (4)). Notice the difference between the two
variants for reservation values xN ≤ xk, as de-
scribed above.

Once we have established the expected
utility structure, we can suggest a simple algo-
rithm for calculating the agent’s optimal reser-
vation value (and thus its expected utility, ac-
cording to (7)) given the number of potential
partners sampled, N , and the other agents’
strategy (k, xk). The algorithm makes use of a binary search and will always
reach the agent’s optimal reservation value, in a finite number of steps. Since the
algorithm is very similar to the one we have suggested in [12] for the case where
only one of the agents uses the parallel search technique, it will not be detailed
in the current context.

4.2 Dual Parallel Two-Sided Search Strategy

Having at hand an efficient means for finding the agent’s optimal reservation
value, given the strategy of the other agents (k, xk), we move on to explore the
dynamics affecting agents’ strategies in the dual parallel search. We start by
introducing two important equations that can be used for finding an agent’s
optimal reservation value, given the number of partners it samples over a search
round, N , and the other agents’ strategy (k, xk).
Theorem 2. When an agent samples N potential partners over a search round
and the other agents use strategy (k, xk): (a) The agent’s optimal reservation
value xN in the variant with equal utilities, satisfies:

(N + k − 1)(α + βN)=N((max(xk, xN) − xN)(F k+N−1(xk) − 1) +
∫ ∞

y=max(xN ,xk)
(1−F k+N−1(y))dy)

(10)
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(b) The agent’s optimal reservation value xN in the different utilities variant,
satisfies:

αk + βNk = (1 − Fk(xk))
∫ ∞

y=xN

(1 − FN (y))dy (11)

Sketch of Proof:
(a) Set the first derivative of (3) to 0 and use integration by parts, substituting:
dv = f(y)F (y)N+k−2 and u = y in (3). Manipulating and rearranging the result
we obtain (10).
(b) Use a similar methodology as in (a) to obtain (11). �

The suggested equalities in theorem 2 are useful computational methods for
calculating xN . This can be particularly important when checking the incen-
tive to deviate from a given strategy. The following theorem 3 captures another
important characteristic of the agent’s strategy that will aid us in finding the
equilibrium.

Theorem 3. (a) In both variants of the model, when all other agents sample k
potential partners over a search round, if an agent’s expected utility of sampling
k + 1 potential partners, Vk+1(xk+1) is smaller than Vk(xk), then the expected
utility when sampling N potential partners, VN (xN ), where N > k + 1, is also
smaller than Vk(xk). (b) Similarly, when all other agents sample k potential part-
ners over a search round, if an agent’s expected utility of using k − 1 potential
partners, Vk−1(xk−1), is smaller than the expected utility when using k potential
partners, Vk(xk), then the expected utility when using N potential partners, where
N < k − 1 is also smaller than Vk(xk).

Sketch of Proof:
(a.1) For the variant with equal utilities - assume otherwise (e.g. the expected
utility when using N , when N > k + 1 and Vk(xk) ≤ VN (xN ), is greater than
Vk(xk)). Then subtract two instances of equation (10) using N and k. Substitut-
ing β as obtained from manipulating the inequality xN −VN+1(xN+1) > 0, using
(1), and analytically exploring both sides of the inequality expression, we obtain
a contradiction, given the incorrectness assumption. The detailed proof, depicted
on several pages, can be found in the full version of the paper.
(a.2) For the variant with different utilities - assume otherwise (xN > xk). Cre-
ate 3 instances of (11) for k, k + 1 and N . Then subtract the first two and the
last two equations. Set all integrals’ lower bounds to xN and notice the obtained
inequality is strictly negative (by deriving the term inside the integral), which
leads to a contradiction, given the incorrectness assumption.
(b) In a similar methodology as used for the proof of part (a), making use of the
appropriate modifications of the inequalities. �

The above theorem is an important milestone towards the formation of an
algorithm for finding the equilibrium, as it allows us to limit the number of
potential partners that needs to be considered, when checking the stability of
a potential equilibrium strategy (only the former and next subsequent numbers
need to be considered).
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4.3 Finding the Equilibrium

Having the results and proofs given in previous subsections, we now suggest
an efficient method for finding the equilibrium in the dual parallel two-sided
search model. From theorem 3, we conclude that in order to check the stability
of strategy (N, xN ), one only needs to check the expected utility of an agent
when deviating to strategy (N +1, xN+1) and (N −1, xN−1). This can be simply
calculated using equations (10) and (11). If the expected utility for strategy
(N, xN ) is greater than the other two, then this is an equilibrium.

As the agents are identical, they will all use the same equilibrium strategy (if
an equilibrium exists), thus their expected utility will be identical. This resolves
the uncertainty in case of a multiple equilibria scenario - all agents will use the
equilibrium strategy with the highest expected utility.

An important consideration is the upper bound for N , when seeking the
equilibrium strategy. An equilibrium doesn’t necessarily exist, and while using the
proposed method one may wonder when to stop as N grows and the equilibrium
conditions are not satisfied. We propose a simple upper bound that can be used
with both variants of the model.

Theorem 4. (a) An upper bound value for the number of partners to be con-
sidered over a search round, in the variant with equal utilities, is the solution
N = Nmax of the equation:

E[UN ] = α + βN (12)

(b)An upper bound value for the number partners to be considered over a search
round, in the variant with different utilities, is the solution N = Nmax of the
equation:

E[UN ] = αN + βN2 (13)

Sketch of Proof:
(a) + (b) - by substituting (12-13) in (3-4), we attain a negative expected utility.
The expected utility will remain negative for any k ≥ Nmax. Though the agents
will unavoidably abandon search activity for these k values, and if no equilibrium
was found up to this point then the problem with the current search cost structure
(α and β values) doesn’t have a pure equilibrium solution. Such an Nmax value
can always be found as the left hand side of equations (12-13) is concave and
the right hand side is convex (except for the case where the agents would have
initially abandoned the search, e.g. where the left hand side of the equations is
smaller than the right hand term for N = 1).

To summarize the methodology for finding the equilibrium (if any exists), we
suggest the following algorithm.

Algorithm 1. An algorithm for finding the equilibrium strategy (N, xN ) for the
dual parallel search model.
Input: α, β - cost structure coefficients; F(x) - the utility c.d.f.
Output: (VN (xN ), xN , N) - Equilibrium strategy, if one exists, otherwise a ”no
equilibrium” message.
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01. Set Nmax according to equation (12).
02. Set List[]=null;
03. for (N=1;N≤ Nmax;N++) {
04. if (N>1) calculate VN−1(xN−1) using (10), where k = N ;
05. calculate VN (xN ) and VN+1(xN+1) using (10), where k = N ;
06. if (VN (xN ) ≥ VN+1(xN+1))
07. if (N=1) or (VN (xN ) ≥ VN−1(xN−1))
08. add (VN (xN ), xN , N) to List[].
09. }
10. If (List[]!=null) return member with highest VN (xN )
11 else return(”no equilibrium”);

The above algorithm is applicable for the variant with equal utilities. In order
to use it with the other variant, one needs to replace equations (12) and (10)
with equations (13) and (11).

If there is an equilibrium solution to the problem, the algorithm will find
the equilibrium strategy in o(Nmax) stages, where Nmax is the upper bound,
calculated according to (12-13), and its value is mostly influenced by the utility
distribution function. The innovation of the proposed algorithm is in bounding
the space of possible strategies which needs to be compared for any suspected
equilibrium strategy. The complexity of the solution, in the absence of such a
bound is discussed in the next section.

5 The Incentive to Use Parallel Search

Considering equations (1) and (4), it is clear that the traditional sequential search
model is a specific case of the general dual parallel search as described in the
model section. For example, by substituting N = 1 in (4), we obtain a similar
expected utility function for the sequential search model as described in [3].
Nevertheless, the sequential two-sided search will not be stable in many cases,
since single agents have an incentive to deviate from the sequential strategy
for many plausible combinations of α and β values. Figure 2 demonstrates this
phenomena for the uniform distribution function. As the utility varies from 0 to
1, the bottom triangular area represents all plausible α and β combinations where
the agents will consider a sequential two-sided search (e.g. where the expected
utility for the agents in a sequential equilibrium strategy is positive). Out of
this area, we have isolated (on the left side) all combinations of α and β where
an agent can increase its expected utility by deviating from such a sequential
strategy (assuming all other agents’ strategies are sequential). For calculation
purposes we used equations (10) and (11). Notice that for a large portion of the
cost structures, any single agent has an incentive to deviate from its sequential
strategy. Furthermore, the incentive to deviate from the sequential strategy is
mainly for the combinations of α and β with small values (in comparison to the
average utility from a partnership), which characterizes most MAS applications.

As each agent has the incentive to use the parallel search technique, the tra-
ditional sequential two-sided search model transforms into a dual parallel search.
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Fig. 2. The incentive for using parallel search

This also suggests a possible improvement in the expected utility of the agents,
in comparison to the traditional sequential two-sided search models. Again, the
improvement is mostly noticeable for values where α and β are relatively small
in comparison to the utilities gained from the partnerships.

The transition into a dual parallel search model doesn’t necessarily guarantee
an expected utility improvement. In some cases, the dual parallel usage may re-
sult, inevitably, in an equilibrium where the agents worsen their expected utility.
In such a scenario, all agents could gain more by using a sequential strategy, but
each, separately has an incentive to deviate towards a parallel strategy, resulting
eventually in a non-optimal result. This is demonstrated in figure 3, again for
the uniform distribution function, with α = 0.1 and β = 0.05. The middle curve
represents the expected utility when sampling N potential partners over a search
round according to the horizontal scale. The upper and lower curves represent
the expected utility when a single agent deviates to N + 1 and N − 1, respec-
tively. Here, the equilibrium utility is obtained when using N = 5 over a search
stage (taking the variant of different utilities). Even though the sequential two-
sided search utility is greater, none of the agents will maintain such a strategy
as both agents have an incentive to deviate towards a higher number of sampled
partners in a search round. The example given for the variant with equal utili-
ties demonstrates a scenario where the expected equilibrium utility when using a

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6

E
xp

ec
te

d
 U

ti
lit

y

N-1->0.199 
N->0.208  

N+1->0.206

N+1

N

N-1

N

0.55

0.58

0.61

0.64

0.67

0.7

1 3 5 7 9 11 13 15 17 19 21

E
xp

ec
te

d
 U

ti
lit

y

N+1

N

N-1

N-1->0.575
N->0.576

N+1->0.575

N

Fig. 3. Deviating from equilibrium



170 D. Sarne and S. Kraus

parallel (N = 21) search is higher than when using a sequential search, though it
is far below the possible expected utility that could have been obtained by using
N = 6.

Thus, extra care should be taken in the analysis of the dual parallel search
equilibrium. This can be extremely important for market makers for understand-
ing the consequences of allowing the agents to sample more than a single potential
partner over each search stage, or even for actually limiting the number of part-
ners that can be sampled by the agents at each turn.

6 Model Variants Comparison

Throughout the examples given in the previous section, one might notice from
figure 2 that there is a stronger incentive to use the parallel search technique
in the variant where the utilities for both parties are different. This doesn’t
necessarily mean the expected utility in this variant is greater. In fact, as notable
from figures 1 and 3, the agents’ expected utility is greater in the variant where
both agents gain the same utility. The explanation for this phenomena can be
found in the strong correlation between both agents acceptance decision, when
utilities are equal, in comparison to no correlation at all in the second variant. If
both agents gain a similar utility from a given partnership, then the probability
that each of them is the highest in the other agent’s sample is relatively high. On
the other hand, when the expected utility from a given partnership is random,
the probability of being the agent with the highest utility to a given potential
partner is 1/N . This insight can be formally proven, as the following theorem
states.

Theorem 5. When all agents use a dual parallel search with N potential partners
over a search round, the variant with equal utilities will yield the agents using the
equilibrium strategy a higher expected utility in comparison to the equilibrium
utility that can be gained in the other variant.

Sketch of Proof:
Set k = N in equations (10) and (11) to obtain equilibrium reservation values,
and isolate the term α + βN . Then subtract the two equations, to obtain:

N

2N − 1

∫ ∞

y=xI
N

(1 − F 2N−1(y))dy =
1
N

∫ ∞

y=xII
N

(1 − FN (xII
N ))(1 − FN (y))dy (14)

Where xI
N is the reservation value of the equal utilities variant and xII

N is the
reservation value of the different utilities variant. Obviously the equation can
hold only if xI

N ≥ xII
N , and from theorem 2 we obtain VN (xI

N ) ≥ VN (xII
N ). �

7 Conclusions

As demonstrated throughout this paper, in many cases, an agent engaged in
search has an incentive to adopt the parallel search technique. Nowadays, as
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agents’ technology is a reality and traditional processing and communication
limitations were removed, it is high time to consider the dual parallel search
model in MAS domains and in particular the two-sided search application for
the electronic marketplace. We manage to present a complete equilibrium analy-
sis, and suggest an efficient algorithm for calculating the agents’ equilibrium
strategies, given the environment parameters (utilities distribution and search
cost coefficients). Deriving the equilibrium strategy is a complex task, as all
agents can control both the number of partners they sample and their accep-
tance criteria; thus the challenge of finding a stable set of strategies becomes
significantly complex. The novelty of the proposed algorithm is in the capabil-
ity to bound the relevant strategy space and quickly eliminate non-equilibrium
strategies. The adoption of the method can significantly improve the expected
utility either when used one-sidedly or simultaneously by all agents. Neverthe-
less, as part of the discussion, we show that in some cases equilibrium dynamics
might drive the agents into a strategy where the number of partners sampled
results in a non-optimal expected utility. In some rare cases this could even
worsen the expected utility in comparison to the sequential search. The later
scenario further emphasizes the importance of the analysis given and the pro-
posed algorithm, as market makers can use the results to understand and eval-
uate the influence of the decision to allow agents in their marketplace to use
parallel search. The proposed analysis was followed by a plausible eCommerce
application from the telephony call termination partnering domain. The divi-
sion into two specific variants of the model, differing by the perceived utility
from a given partnership, extends the variety of applications this model can be
integrated in.

Notice that throughout the paper we assumed that the agent commits only
to the potential partnership with the agent associated with the highest utility
in the sample (assuming it is above its reservation value). Nevertheless, in a
given sample, there might be several agents with a utility that might be greater
than the reservation value being used. Thus the agent can improve its expected
utility by considering committing also to the next best agent in the sample,
upon receiving a rejection from the current potential partner agent. It is notable,
however, that this technique has some setbacks. First, all agents need to wait
for a rejection/acceptance message from their best sampled agent before consid-
ering committing to their next best candidate. This creates many constraints,
and necessitate a protocol in which all the agents conduct each search round
simultaneously. This might also require the introduction of a discounting factor
into the model. Second, because of the significant amount of time that needs
to be allocated for each search round (because of the expected bottlenecks), a
failure or malfunction of one of the agents might, in extreme cases, drive the
entire system into a ”hold” position. Thus, prior to considering such a model
for future research, a substantial research effort should be made to build the
infrastructure and protocols for handling the additional dependencies and con-
straints involved.
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Abstract. This paper documents the development of three autonomous stock-
trading agents within the framework of the Penn Exchange Simulator (PXS),
a novel stock-trading simulator that takes advantage of electronic crossing net-
works to realistically mix agent bids with bids from the real stock market [1]. The
three approaches presented take inspiration from reinforcement learning, myopic
trading using regression-based price prediction, and market making. These ap-
proaches are fully implemented and tested with results reported here, including
individual evaluations using a fixed opponent strategy and a comparative analysis
of the strategies in a joint simulation. The market-making strategy described in
this paper was the winner in the fall 2003 PLAT live competition and the runner-
up in the spring 2004 live competition, exhibiting consistent profitability. The
strategy’s performance in the live competitions is presented and analyzed.

1 Introduction

Automated stock trading is a burgeoning research area with important practical applica-
tions. The advent of the Internet has radically transformed the nature of stock trading in
most stock exchanges. Traders can now readily purchase and sell stock from a remote
site using Internet-based order submission protocols. Additionally, traders can moni-
tor the contents of buy and sell order books in real time using a Web-based interface.
The electronic nature of the transactions and the availability of up-to-date order-book
data make autonomous stock-trading applications a promising alternative to immediate
human involvement.

The work reported here was conducted in the Penn Exchange Simulator (PXS), a
novel stock-trading simulator that takes advantage of electronic crossing networks to
realistically mix agent bids with bids from the real stock market [1]. In preparation
for an open live competition, we developed three parameterizable trading agents and
defined several instantiations of each strategy. We optimized each agent independently,
and then conducted detailed controlled experiments to select the strongest of the three
for entry in the live competition.

It is important to realize from the outset that this research is primarily an agent
study pertaining to the interactions of particular agents in a fixed economy. Although
PXS makes a strong and reasonable claim to implementing a realistic simulation of the
stock market, the results and conclusions in this paper pertain to test economies includ-
ing specific other stock-trading agents. In particular, we do not aim to create strategies
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that are ready for profitable deployment in the real stock market (otherwise we would
likely not be writing this paper!). Rather, this paper makes three main contributions.
First, it contributes an empirical methodology for studying and comparing stock-trading
agents—individually as well as jointly in a shared economy—in a controlled empiri-
cal setting. Second, it implements this methodology to compare three specific trading
agents based on reinforcement learning, myopic trading using regression-based price
prediction, and market making. Third, this paper contributes detailed specifications of
promising strategy designs, one of which vastly outperformed competitor strategies in
an open stock-trading competition and exhibited consistent profitability under a variety
of market conditions.

The remainder of the paper is organized as follows. Section 2 provides the relevant
technical background on the PXS simulator, our substrate domain. Section 3 charac-
terizes prior research and points out the distinguishing features of this work. Section 4
discusses our approach to the automated stock-trading problem, explains our assump-
tions, and details our experimental methodology. Sections 5–7 describe our three stock-
trading strategies. Sections 8–10 present and analyze the experimental results, focusing,
respectively, on individual evaluations, the joint simulation, and the live competitions.
Finally, Section 11 concludes with a discussion of unresolved questions and promising
directions for future work.

2 Background

The Penn-Lehman Automated Trading (PLAT) project [1] is a research initiative de-
signed to provide a realistic testbed for stock-trading strategies. PLAT provides a sim-
ulated stock-trading environment known as the Penn Exchange Simulator (PXS) that
merges virtual orders submitted by computer programs with real-time orders from the
Island electronic crossing network (ECN) [2]. No actual monetary transactions are con-
ducted, and the efficacy of a trading strategy can be reliably assessed in the safety of a
simulated market. Many previous stock simulators been developed that execute simu-
lated orders at the current price in the real stock market. However, such simulators miss
the effect of a simulated order on this price, an effect that becomes increasingly signifi-
cant as the size of the orders increases. The main novelty of PXS is that it uses not only
the current stock price, but also the whole list of pending limit orders to realistically
determine the effect of simulated activity on the market [1].

PXS operates in cycles. During every cycle, a trading agent can place new orders
and/or withdraw some of its previously placed orders. When placing a buy order, the
agent specifies the number of shares it wishes to purchase and the highest price per
share it is willing to pay. PXS sorts the buy orders by price into a buy order book, with
the most competitive (highest-priced) orders at the top of the book. Likewise, a sell
order states the amount of stock being sold and the lowest price per share the seller
is willing to accept. PXS sorts the sell orders into a sell order book, with the most
competitive (lowest-priced) orders on top. When an order arrives, PXS matches it with
orders in the opposite order book (starting at the top of the book) that meet the order’s
price requirements. Partial matches are supported. Any unmatched portion of the order
is placed in the corresponding book, awaiting competitive enough counterpart orders to
match fully.
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Apart from complete order-book data, the simulator makes a variety of agent-
specific and market-wide information available to aid in order placement. In addition
to real-time operation (live mode), the simulator supports historical simulations that
use archived stock-market data from the requested day. Historical mode operates on a
compressed time scale, allowing the simulation of an entire trading day in minutes. As
a result, the agent is able to place considerably fewer orders overall than in live mode.
Aside from the lower order-placement frequency, historical mode is operationally iden-
tical to live mode.

In December 2003 and April 2004, live PLAT stock-trading competitions were
held including agents from several universities. The sole performance criterion was
the Sharpe ratio, defined as the average of the trader’s daily score over several days di-
vided by the standard deviation. Thus, favorable placement in the competition required
not only sizable daily earnings but also consistent day-to-day performance. The trader’s
score on a given trading day was its total profit and loss (“value”) at the end of the day
plus total “rebate value” (computed as $0.002 per share that added liquidity to the simu-
lator) minus total “fee value” (computed as $0.003 per share that removed liquidity from
the simulator). These rebates and fees are the same as those used by the Island ECN.
Arbitrarily large positive or negative intra-day share holdings were allowed. However,
the entrants were to completely unwind their share positions before the end of the day
(i.e., sell any owned shares and buy back any owed shares) or face severe monetary
penalties.

As a benchmark strategy for the experiments reported in this paper, we used the
Static Order-Book Imbalance (SOBI) strategy [1], provided to participants in the PLAT
competition as an example trading agent. We used default settings for all SOBI pa-
rameters. SOBI sells stock when the volume-weighted average price (VWAP) of the
buy-book orders is further from the last price than the sell-book VWAP, interpreting
this as weaker support for the current price on the buyers’ part and a likely depreciation
of the stock in the near future. In the symmetric scenario, SOBI places buy orders.

3 Related Work

Prior research features a variety of approaches to stock trading, including those pre-
sented here. Automated market making has been studied in [3,4,5]. Reinforcement
learning has been previously used to adjust the parameters of a market-making strat-
egy in response to market behavior [3]. Other approaches to automated stock trading
include the reverse strategy and VWAP trading [5,6]. A brief overview of these com-
mon approaches can be found in [7].

To our knowledge, there have been no empirical studies of the interactions of het-
erogeneous strategies in a joint economy, yet such simulations would likely be more
revealing of a strategy’s earning potential than a study of the strategy in isolation. As a
result, this work combines detailed individual evaluations of the strategies with a prin-
cipled study of their performance in a joint economy. Another distinguishing feature of
this research is the use of a highly realistic stock simulator. Furthermore, this research
bases performance evaluations on the Sharpe ratio, a reliable measure of “the statistical
significance of earnings and the trade-off between risk and return” [1]. The Sharpe ratio
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is “the most widely-used measure of risk-adjusted return,” a quantity most modern fund
managers seek to maximize (rather than raw profits) [8]. Unfortunately, the Sharpe
ratio has seen little use in the automated stock-trading literature.

The strategies themselves certainly do set this work apart from previous research.
Specifically, we know of no other research applying reinforcement learning to the com-
plete stock-trading task. Moreover, the exact design and parameterization of the trend-
following and market-making strategies used in this paper have likely not been tried
elsewhere. However, what truly makes this work original are the principled compar-
isons of the strategies in a novel, more realistic setting, with a relatively uncommon and
valuable performance metric.

4 Approach and Assumptions

The generic stock-trading agent architecture used throughout this paper is illustrated in
Figure 1. The PLAT competition does not allow share/cash carryover from one trading
day to the next. This algorithm is therefore designed to run from 9:30 a.m. to 4 p.m., the
normal trading hours, maximizing profits on a single day (lines 1–4) and completely un-
winding the share position before market close (lines 5–9). The actual trading strategy
is abstracted into the COMPUTE-ACTION routine. Given the system’s state, this routine
prescribes the withdrawal of some of the previously submitted orders and/or the place-
ment of new orders, each given by a type (BUY or SELL), volume, and price. Sections
5, 6, and 7 explore distinct implementations of this routine.

GENERIC-TRADING-AGENT

1 while current-time < 3 p.m.
2 do state ← updated trader, market stats; action ← COMPUTE-ACTION(state)
3 if action �= VOID

4 then place/withdraw orders per action
5 withdraw all unmatched orders
6 while market open � unwind share position
7 do state ← updated trader, market stats
8 if share-position �= 0
9 then match up to |share-position | shares of top order in opposite book

Fig. 1. Generic agent architecture

Position unwinding (lines 5–9 in Figure 1) works as follows. The agent starts by
withdrawing all its unmatched orders. Then, if the agent owes shares (has sold more
than it has purchased), it places a buy order, one per order placement cycle, for s shares
at price p, where s and p are the volume and price of the top order in the sell book. The
liquidation of any owned shares proceeds likewise. This unwinding method allows for
rapid unwinding at a tolerable cost. By spacing the unwinding over multiple cycles, this
scheme avoids eating too far into the books. By contrast, a scheme that simply places
a single liquidating order is unable to take advantage of future liquidity and possibly
better prices.
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The fundamental assumption underlying the generic agent design of Figure 1 is
that profit maximization and position unwinding are two distinct objectives that the
automated trading application can treat separately. Although this task decomposition
may be suboptimal, it greatly simplifies automated trader design. Moreover, the profit-
maximization strategies proposed in this paper, perhaps with the exception of the ap-
proach based on reinforcement learning, hold very reasonable share positions through-
out the day, making unwinding feasible at a nominal cost. The time of the phase shift
between profit maximization and position unwinding (3 p.m.) was heuristically chosen
so as to leave more than enough time for fully unwinding the agent’s position.

We have adopted the following experimental methodology in this paper. First,
we developed three parameterizable strategies (implementations of the COMPUTE-
ACTION routine) and defined several instantiations of each strategy. Next, we evaluated
each instantiation separately, in a controlled setting, using SOBI as a fixed opponent
strategy. In what follows, we describe only the most successful instantiation of each
strategy. Finally, we identified the most successful strategy among these by means of a
joint simulation. The live competitions, albeit not controlled experiments, have offered
additional empirical feedback.

5 The Reinforcement Learning Agent

Reinforcement learning [9] is a machine-learning methodology for achieving good
long-term performance in poorly understood and possibly non-stationary environments.
Given the seemingly random nature of market fluctuations, it is tempting to resort to a
model-free technique designed to optimize performance given minimal domain exper-
tise and a reasonable measure of progress. A machine-learning approach to this prob-
lem is further motivated by the need to adapt to the economy (particular mix of oppo-
nents, market performance, etc.). A fixed, hand-coded strategy can hardly account for all
contingencies.

In its simplest form, a reinforcement learning problem is given by a 4-tuple
{S, A, T, R}, where S is a finite set of the environment’s states; A is a finite set of
actions available to the agent as a means of extracting an economic benefit from the
environment, referred to as reward, and possibly of altering the environment state;
T : S × A → S is a state transition function; and R : S × A → R is a reward func-
tion. The state transition and reward functions T and R are possibly stochastic and
unknown to the agent. The objective is to develop a policy, i.e., a mapping from envi-
ronment states to actions, that maximizes the long-term return. A common definition of
return, and one used in this work, is the discounted sum of rewards:

∑∞
t=0 γtrt, where

0 < γ < 1 is a discount factor and rt is the reward received at time t.
The original RL framework was designed for discrete state-action spaces. In order

to accommodate the continuous nature of the problem, we used tile coding, a linear
function-approximation method, to allow for generalization to unseen instances of the
continuous state-action space.

5.1 Strategy Design

Since the transition function T is an unknown feature of the environment meant to be
learned by the agent, the design of a trading strategy reduces to the specification of
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the state-action space and the reward function. After exploring several formulations of
the stock-trading problem as a reinforcement-learning task, we adopted the following
design:

State Space. The state space is given by a single variable, the price parameter Δpt =
pt − pt, computed as the difference between the current last price and an exponential
average of previous last prices: pt = βpt−1 + (1 − β)pt. The effect of β is to focus
the agent on short-term or long-term trends (see Section 5.2 for an experimental study
of this effect). The definition of the price parameter as a difference serves a twofold
purpose. On the one hand, it gives an indication of the latest market trend: Δp ≈ 0
corresponds to a stationary market, Δp < 0 corresponds to a decline in price, and
Δp > 0 indicates that the stock price is on the rise. On the other hand, this definition
makes the learned policy more general by eliminating the dependency on the absolute
values of the prices.

We limited the state space to the price parameter for the following reasons. First of
all, share and cash holdings are of no use as state variables: the “right” trading decision
is never contingent on these parameters because the agents are allowed to have an arbi-
trarily large positive or negative share/cash position, and position unwinding is no part
of the profit-maximization strategy. For the same reason, a “remaining time” parameter
would not be helpful either. Although additional state variables might have been useful,
we decided to avoid the corresponding increase in complexity.

Action Space. The action space is likewise given by a single variable, the volume of
shares to purchase or sell. We limited the range of this variable to [−900, 900], with
negative values corresponding to sell orders and positive values, to buy orders. This
trade size is a very generous leash, allowing rapid accumulation of share positions as
large as 150,000 shares and beyond. To save a dimension of complexity, we decided
against extending the action space to include order price. Instead, we always set the
price of an order to the last price, leaving it up to the agent to adjust the demanded
volume accordingly.

Reward Function. Ideally, the reward should be computed only once, at the end of
the trading day, with zero intermediate rewards assigned at each time step along the
way; otherwise, there is a danger that the trader will learn to optimize the sum of local
rewards without optimizing the final position ([9], Chapter 3). There are two important
complications with this approach. First, it rules out on-line adjustment to the economy.
Second, given the complexity of the state-action space (2 continuous variables) and the
duration of a simulation (≈50,000 order placement cycles in live mode), the training
time requirements of this method seem excessive. Instead, we use a localized reward
function, given by the difference in present value (cash holdings plus shares valued at
the last price) from the last time step.

5.2 Parameter Choices

We used the Sarsa algorithm [10,11] with the following parameters: α = 0.04, γ = 0.8,
ε = 0.1, and λ = 0.7. We have not experimented with varying these values and
used them as reasonable general settings. A final parameter that played a substan-
tial role was β, the update rate for computing the exponential average of past prices:
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Fig. 2. Effect of β on price average

pt = βpt−1 + (1 − β)pt. Figure 2 demonstrates the behavior of the average price on
two trading days with different price dynamics and β settings. As the graphs indicate,
the closer β is to 1, the more “inert” the exponential average, i.e., the less responsive
to changes in the price trend. On the one extreme, β = 0.95 essentially duplicates the
last price graph, yielding little information about past price dynamics. On the other ex-
treme, β = 0.999 yields an average that is not at all representative of the changes in
price dynamics. The graphs indicate that a choice of β = 0.99 offers a nice balance,
responding sufficiently quickly to genuine trend reversals and ignoring random fluctu-
ations. We use this informed heuristic choice for β in our experiments, leaving a more
detailed optimization with respect to actual performance for future work.

The strategy was trained on 250 historical simulations, each encompassing over
15,000 order placement cycles, for a total of nearly 4 million Bellman backups. This
amount of training effort was deemed to provide the agent with sufficient experience.
Each simulation involved SOBI as the agent’s only opponent. The trading days were a
random mix of trading days in October 2003, similar in composition to the handpicked
collection of days on which performance was measured. The agent functioned in learn-
ing mode (i.e., using the original settings of the learning and exploration rates) during
evaluative simulations to allow on-line adjustment to the economy.

6 The Trend-Following Agent

Our second agent uses a trend-following (TF) approach based on price prediction. Un-
like reinforcement learning, this approach constructs an explicit model of market dy-
namics, based on linear regression, to guide order placement. Roughly, the strategy is as
follows. If the price is rising (i.e., the slope of the regression line is positive), the agent
places buy orders, confident that it will be able to sell the purchased shares back at a
higher price. If, on the other hand, the price is falling, the agent will place sell orders. In
either case, the agent attempts to unwind its share position just before the price starts to
drop (if it is currently on the rise) or just before the price starts to rise (if it is currently
on the decline).

The details of the TF approach are best illustrated through an example. Figures 3a
and 3b show, respectively, the Island last price on November 18, 2003, and the first and
second derivatives1 P ′ and P ′′ of the price function (scaled differently to permit display

1 As explained below, P ′ and P ′′ extract growth information from series of price data, to ac-
count for its noisy nature. Therefore, P ′ and P ′′ are not derivatives in the strict sense of the
term since they do not capture instantaneous change, and we abuse this mathematical concept
slightly here.
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Fig. 3. Island last price on 11/18/2003 (a) and the corresponding P ′ and P ′′ curves (b)

on the same set of axes). The value of the P ′ curve at time t is the slope of the linear
regression line computed using the price data for the past hour, i.e., for the time interval
[t − 3600, t], where t is expressed in seconds. The length of the time interval presents
a trade-off between currency (shorter time intervals generate P ′ curves that are more
responsive to price fluctuations) and stability (longer time intervals generate P ′ curves
that are more “inert” and thus less susceptible to random fluctuations). We used an
interval width of 1 hour, the duration of a typical medium-term trend, to balance these
desirable characteristics. The purpose of the P ′ curve is to distill growth and decrease
information from the price graph, detecting genuine long-term price trends and ignoring
short-term random price fluctuations.

The value of the P ′′ curve at time t is the slope of the linear regression line computed
using the P ′ curve data for the past 400 seconds, i.e., over the time interval [t − 400, t].
The width of the time interval over which the regression line is computed offers the
same trade-off between responsiveness and stability; our experiments suggest that the
value of 400 seconds offers a good balance. The P ′′ curve is above the x-axis whenever
the P ′ curve is exhibits growth, and below the x-axis whenever the P ′ curve is on the
decline. Therefore, the P ′′(t) value changes sign whenever the P ′ curve reaches a local
extremum, signaling a likely trend reversal in the near future. The purpose of the P ′′(t)
is to alert the agent when the price trend is reversed.

Figure 4 presents the trend-following strategy in pseudo-code. We used a trade size
of 75 shares, a rather generous limit leading to share positions as large as 150,000
shares. Further increasing the trade size may complicate unwinding. Another essential
component of the strategy is the order pricing scheme (lines 1–2). In the pseudo-code,

COMPUTE-ACTION(state)

1 sell -price ← max{last-price , predicted -last-price}
2 buy-price ← min{last-price , predicted -last-price}
3 if P ′ > 0 and P ′′ > 0
4 then return “BUY 75 shares at buy-price”
5 elseif P ′ < 0 and P ′′ < 0
6 then return “SELL 75 shares at sell -price”
7 elseif share-position �= 0 � reversal, so unwind
8 then withdraw unmatched orders
9 return “match up to |share-position | shares of top order in opposite book”

10 else return “VOID”

Fig. 4. The trend-following strategy
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we defined predicted -last-price = a · tcurr + b, where tcurr is current time and a =
P ′(tcurr) and b are the parameters of the linear regression line fitted to the price data
for the past hour. Our original implementation always stepped a fractional amount in
front of the current top order, ensuring rapid matching of placed orders. The current
strategy design uses a more cautious pricing scheme that experiments show results in
systematically better performance.

7 The Market-Making Agent

As discussed above, the objective of the trend-following strategy is to look for long-
term trends in price fluctuations, buying stock when the price is low and later selling
stock when the price has gone up (and vice versa with the price going in the opposite
direction). As a result, the performance of the strategy is highly dependent on the price
dynamics of a particular trading day. If more consistency is desired, an approach based
on market making (MM) may be more useful. Unlike the trend-following strategy, the
MM strategy capitalizes on small fluctuations rather than long-term trends and is likely
to produce a smaller variance in profit.

Our final approach to the stock-trading problem combines the regression-based
price prediction model presented in Section 6 with elements of market making. The
strategy (Figure 5) still buys stock when the price is increasing at an increasing rate and
sells stock when the price is decreasing at an increasing rate. However, rather than wait
for a trend reversal to unwind the accumulated share position, the agent places buy and
sell orders in pairs. When the price is increasing at an increasing rate, the agent places a
buy order. As soon as this primary order is matched, the agent places a sell order at price
p + PM (the conditional order, so called because its placement is conditional on the
matching of the primary order), confident that the latter will be matched shortly when
the price has gone up enough. The PM (profit margin) parameter is the per-share profit
the agent expects to make on this transaction. Our implementation uses PM = $0.01

COMPUTE-ACTION(state)

1 S ← price of top sell order + $0.001 � sell price
2 B ← price of top buy order - $0.001 � buy price
3 place qualifying conditional orders
4 if P ′ > 0 and P ′′ > 0
5 then create conditional order

“SELL 75 @ B +PM ”
6 return “BUY 75 shares at B”
7 elseif P ′ < 0 and P ′′ < 0
8 then create conditional order

“BUY 75 @ S − PM ”
9 return “SELL 75 shares at S”

10 else return “VOID”

Fig. 5. The market-making strategy
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Fig. 6. Price dynamics (stock price vs. time)
on the 10 days used for strategy evaluation.
Dates (left to right and top to bottom): 11/3,
4, 6, 19, 12, 18, 24, 21, 13, 26. (All dates
in Oct. 2003.) Label legend: M=“monotonic,”
F=“substantial fluctuation,” Z=“zigzag behav-
ior,” O=“mixed (other).”
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as a sufficiently profitable yet safe choice. The situation is symmetric when the price is
decreasing at an increasing rate. Finally, the agent takes no action during periods des-
ignated as “price reversal” by the prediction module (with price increasing/decreasing
at a decreasing rate): since the orders are placed in pairs at what is deemed a “safe”
time, no additional effort is called for to unwind the share position. The pricing scheme
(stepping just behind the top order) is designed to avoid fees for removing liquidity, as
discussed in Section 2.

8 Individual Assessment

Our controlled experiments in this section and Section 9 use a set of 10 trading days
carefully selected to represent typical price dynamics (Figure 6), namely, monotonic
decrease/increase, substantial fluctuation, and zigzag and mixed behaviors. The graphs
in Figure 6 are scaled differently and convey only the shape of the price curves. Each
graph is labeled by a symbol denoting the price behavior, with a legend given in the
caption. Table 1 displays the raw profit/loss of the RL, TF, and MM strategies in in-
dividual simulations against SOBI, with days labeled by price behavior (the labels are
taken from Figure 6). The bottom row gives each strategy’s average profit/loss over the
10 days, a measure of overall efficacy. In this section, the strategies were allowed to
run through 4 p.m., i.e., the unwinding code (lines 5–9 of Figure 1) was omitted and
the final score was computed as present value (cash holdings plus shares valued at the
closing price).

Table 1. Individual assessment of RL, HC, and
MM vs. SOBI

Price RL vs. SOBI TF vs. SOBI MM vs. SOBI

M 11134 -21935 -4015 -29686 529 -30286
M 45680 -56308 -3591 -44216 972 -52255
F -5142 55710 -4292 108476 -471 117192
F -50529 17464 -1533 19958 1131 24908
Z -69683 230715 -4390 155539 -518 154082
Z 358774 96387 3163 32383 -3370 15605
Z -284563 -11059 -479 -1964 744 -2417
O 49621 -13805 -5494 -12063 654 -22632
O 3407 25026 -4139 118016 638 85099
O 2302 29015 -4692 23098 1224 27467

Ave 6100 35121 -2946 36954 153 31676

Table 2. RL, TF, MM, and SOBI in a joint sim-
ulation

Date RL TF MM SOBI

11/03/03 -7314 -2659 692 550
11/04/03 -40712 -1623 1087 -23999
11/06/03 -10980 -2119 -13 51432
11/12/03 -160178 -1159 -1321 99489
11/13/03 -20981 -430 684 43088
11/18/03 -209277 6045 -1300 75569
11/19/03 -22747 -3469 108 15550
11/21/03 28345 -3677 735 -6216
11/24/03 -992 90 1081 -2289
11/26/03 19299 -4776 259 22295

Average -42553 -1377 201 27546
Std. dev. 78395 3012 879 39273

Sharpe Ratio -0.5428 -0.4573 0.2290 0.7014

8.1 Reinforcement Learning

RL by far outperforms SOBI on the two days with monotonic price behavior. On days
with substantial fluctuation in price, SOBI is profitable and RL loses money. Finally,
the two strategies exhibit roughly comparable performance on the days with zigzag and
mixed price behavior, each finishing 4 days in the black and losing money on the 2 other
days.
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RL’s performance under different market conditions is a direct consequence of the
problem formulation as a reinforcement-learning task. The strategy is profitable on both
days with steady price growth/decline, a success owed to the price difference parame-
ter that recognizes market trends, and an indication that learning and adaptation do take
place. Such a parameter is not particularly valuable on days with substantial fluctuation
because trends are short-term and trend reversals are frequent. The concluding 6 days
(zigzag and mixed behavior) are much more auspicious for the strategy because the mar-
ket trends last significantly longer, accounting for RL’s profitability on most of the days.

It is no doubt encouraging to see RL, a strategy evolved by a generic machine-
learning technique with minimal domain expertise, perform overall comparably with
SOBI, a hand-coded approach requiring a firm grasp of stock trading. On the other hand,
the experiments reveal much room for improvement under certain price dynamics, in
part due to the difficulties of adapting RL methodology to the stock-trading domain. A
major problem is the exogenous nature of the transition function: when the agent places
an order, it cannot control when the order will be matched, if at all. The reward function
is oblivious to this fact, attributing any change in present value, which may well be due
to random price fluctuation, to the last action taken. This misattribution of reward is
likely to present a great impediment to learning.

A different and much more successful RL-based approach to trading in a continu-
ous double auction setting such as the stock market is reported in [12]. That method
computes a belief function (a mapping from bid and ask prices to the likelihood of a
trade) based on recent market behavior and then uses dynamic programming (with the
belief function serving as the market model) to compute an optimal order. An approach
of this type would be readily implementable in the PXS framework, which makes com-
plete order-book data available. This alternative formulation shifts the entire learning
challenge from the RL agent to a non-RL analytical subsystem that constructs a trade
probability model, leaving to the agent only a straightforward recursive computation.
In contrast, we relied on the RL agent to learn the task from scratch.

Yet another research avenue to consider is direct (policy-search) RL methods. It has
been argued [8] that these methods help avoid the search space explosion due to contin-
uous variables and learn more efficiently from the incremental performance indications
in financial markets (as opposed to the delayed-reward domains in which value-based
methods have excelled).

8.2 Trend Following

As expected, TF beats SOBI on the days with monotonic price behavior by avoiding
large positive share positions when the price is declining or large negative share posi-
tions when the price is increasing. SOBI is far more profitable on days with substantial
fluctuation because it does not rely on longer-term price trends. On the days with zigzag
and mixed price behavior, TF wins a third of the time. TF’s strongest performance on a
day with zigzag price behavior jibes well with the intuition that TF should perform best
under price trends of medium duration: shorter trends diminish the value of prediction,
while longer ones often contain aberrations that trigger premature unwinding.

With a single profitable day, TF’s performance is disappointing. TF is the only strat-
egy in Table 1 with a negative average profit/loss. In fact, additional analysis reveals that
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TF often steadily loses value throughout the day. We have experimentally verified that
this is not due to a problem with timely unwinding. Specifically, when we incorporated
periodic unwinding in the above design (ensuring that the agent keeps its share holdings
to a moderate amount instead of relying on an advance warning of a trend reversal from
the prediction module), we observed no change in performance. Our understanding is
that, on the contrary, the prediction module generates too many false alarms, triggering
premature unwinding.

8.3 Market Making

MM’s results are very encouraging. The agent is profitable on 70% of the days. MM per-
forms very well on days with monotonic and mixed price behaviors. Days with zigzag
price behavior seem to present a problem, however. One explanation is that the condi-
tional orders, whose primary counterparts match just before the extremum, are placed
and never matched due to the unfavorable change in price; the resulting share imbalance
is never eliminated and severely affects the agent’s value. In terms of raw profitability,
MM wins 4 of the 10 simulations. However, MM’s profits seem far more consistent, a
claim we quantify in Section 9.

The market-making approach shows great promise. Neither the reinforcement learn-
ing nor trend-following approach come close to rivaling MM’s profit consistency. An
important extension for MM to be viable in practice would be an adaptive mechanism
for setting the trade size and profit margin, both highly dependent on the economy. A
further nuance is that there is an inherent trade-off between these parameters. If the
agent trades large volumes, it will have to accept narrow profit margins or else see its
conditional orders unmatched; if the agent trades little, it can afford to extract a more
ambitious profit per share.

9 Comparative Analysis

Table 2 contains joint-simulation performance data for every strategy presented above
and every trading day. This time, the strategies ran through 3 p.m., at which point con-
trol was turned over to the unwinding module (lines 5–9 of Figure 1). Each strategy
finished every trading day with zero share holdings. We used the PLAT scoring policy
and performance criterion (Section 2). RL and TF were largely unprofitable, finishing
with a negative score on 8 of the days.2 RL’s performance was particularly poor, as
the large negative scores indicate, presumably because its training experience did not
incorporate key features of the joint economy. MM and SOBI, on the other hand, were
consistently winning, finishing with a positive balance on 7 of the days. Of the four
strategies, SOBI’s scores are the most impressive.

The bottom row of Table 2 shows the Sharpe ratios for each strategy in the joint
simulation. SOBI wins with the highest Sharpe ratio, followed by MM, TF, and RL. It is

2 Given RL and TF’s large losses, it has been speculated that “reversing” their trading recom-
mendations would have yielded a profitable strategy. In general, this claim is unwarranted due
to the limited liquidity provided by a handful of other agents; it is impossible to predict how
the other traders would have reacted to the new orders.
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noteworthy that MM, generating profits that are a tiny fraction of SOBI’s, finished with
a Sharpe ratio quite close to SOBI’s. This fact is due to the emphasis on consistency
built into the Sharpe ratio. An important lesson to learn from this comparison is that
if the Sharpe ratio is the primary criterion, large profits are not strictly necessary for
placing in the top ranks; a consistent strategy that generates small profits will be a
strong contender. Therefore, we decided to use MM in the live competition.

It is certainly disappointing that RL, the most innovative of the three approaches,
did very poorly both in an absolute sense and in comparison with the other strategies.
However, the focus of this study was not a quest for a novel stock-trading algorithm but
a comparative evaluation of strategies with the purpose of selecting one as a competition
entry. At the same time, the results above help explain stock traders’ preference for
market making and similar well-tried methodologies over original machine-learning
techniques.

10 Live Competition Results

The market-making strategy proved best of the three strategies in off-line experiments.
But of course one of the three had to prevail. The true test of this research was how the
chosen strategy would do in an open competition with agents created by many other
people also trying to win.

The exact MM strategy we used in the live competition differed from the original
design of Figure 5 in two respects. First, the trade size was scaled down (from 75 to 15)
to account for the higher order-placement frequency in live mode. Second, the primary
sell and buy orders were priced at the last price plus and minus profit margin, respec-
tively; the corresponding conditional orders were priced at the last price. This more
cautious pricing scheme gives a greater assurance that, if a primary order matches, its
corresponding conditional order will match as well, avoiding costly share imbalances.

Participants in the December 2003 and April 2004 PLAT live competitions were
divided into two separate economies. Tables 3 and 4 summarize the performance of
MM and the 5 other strategies in its group (labeled #1 through #6, in order of final
rankings). The top 10 rows show daily scores, and the bottom row shows the Sharpe
ratios. MM fully justified our hopes in December 2003, exhibiting steady profitability
on every single trading day and attaining the highest Sharpe ratio (no agent in the other
group attained a positive Sharpe ratio). As to MM’s competitors, agents #2, #3, and #4
were highly profitable, routinely realizing profits in the thousands. MM’s profits were
an order of magnitude smaller but far more consistent than its opponents’, resulting in
the highest Sharpe ratio. In April 2003, MM’s performance fell short of its December
victory. However, the agent achieved a satisfactory Sharpe ratio and placed second,
exhibiting profitability on 8 of the days and suffering minor losses on the other two.
Overall, MM has attained an 18-day record of profitable and consistent performance.
Details of the competition, including complete results, are available from the PLAT
website.3

3 The competition results are currently at http://www.cis.upenn.edu/∼mkearns/
projects/newsandnotes03.html. The main project page is http://www.
cis.upenn.edu/∼mkearns/projects/pat.html.
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Table 3. Dec. 2003 live competition results

Date MM #2 #3 #4 #5 #6

12/9 135 -7447 -4106 4034 -56731 -7E+5
12/10 381 3006 -3254 3625 -6E+5 -7E+5
12/11 436 1365 5971 1251 196 -6E+5
12/12 140 848 322 -986 -2E+5 -7E+5
12/13 62 2536 1334 1286 -1E+5 -5E+5
12/16 439 3716 3940 3129 18227 -7E+5
12/17 359 3501 7924 433 10873 -7E+5
12/18 411 1037 2163 1389 0 -5E+5
12/19 430 4617 -119 -9512 0 -5E+5
12/20 679 1692 -64 2148 599 -6E+5

Ave 347 1487 1411 680 -98167 -6E+5
St. dev. 185 3378 3772 3887 2E+5 84772
Sharpe 1.88 0.44 0.37 0.17 -0.48 -7.32

Table 4. Apr. 2004 live competition results

Date #1 MM #3 #4 #5 #6

04/26 3433 271 1045 1307 -4655 -9E+6
04/27 1374 538 4729 2891 -1370 -8E+6
04/28 2508 -242 243 -1563 2178 -7E+6
04/29 2928 -248 -6694 -1349 2820 -8E+6
04/30 3717 13 12508 -1339 2766 -8E+6
05/03 3444 636 11065 3230 2961 -7E+6
05/04 1322 386 -2377 1850 2665 -8E+6
05/05 3300 452 5708 2037 -5746 -8E+6
05/06 2199 461 9271 2465 2402 -8E+6
05/07 966 121 11755 1041 -2545 -8E+6

Ave 2519 239 4725 1057 148 -8E+6
St. dev. 1009 316 6551 1829 3413 +6E+5
Sharpe 2.50 0.76 0.72 0.58 0.04 -12.59

11 Conclusions and Future Work

This paper documents the development of three autonomous stock-trading agents.
Approaches based on reinforcement learning, trend following, and market making are
presented, evaluated individually against a fixed opponent strategy, and analyzed com-
paratively. A number of avenues remain for future work. The reinforcement learning
approach calls for an improved reward function. The trend-following agent needs a
more accurate price prediction module that would eliminate premature unwinding due
to a perceived trend reversal. The highly successful market-making strategy would fur-
ther benefit from automatic adjustment of the trade size and profit margin as a function
of the economy.

This study confirms that automated stock trading is a difficult problem, with rea-
sonable heuristics often leading to marginal performance and small-profit strategies
proving competitive, according to important metrics, with highly profitable strategies.
While the area of stock trading has received much attention in the past, the unique op-
portunities and challenges of up-to-date order book information and of electronic share
exchanges, as exemplified in part by the presented approaches, merit further study.
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Abstract. We provide a formal scripting language to capture the se-
mantics of market mechanisms. The language is based on a set of well-
defined principles, and is designed to capture an agent’s rights, as derived
from property, and an agent’s obligations, as derived from restrictions
placed on its actions, either voluntarily or as a consequence of other ac-
tions. Rights and obligations are viewed as first-class goods, from which
we define fundamental axioms about well-functioning market-oriented
worlds. Coupled with the scripting language is a run-time system that
is able to monitor and enforce rights and obligations. Our treatment ex-
tends to represent a variety of market mechanisms, ranging from simple
two-agent single-good exchanges to complicated combinatorial auctions.

1 Introduction

Many authors have written about a future of agent-mediated electronic com-
merce, in which agents engage in commerce on behalf of individuals and busi-
nesses. We take this idea seriously, and provide a formal scripting language for
describing economic markets that is: (i) natural and easy to understand, for hu-
mans to be able to participate, (ii) formal and unambiguous, for artificial agents
to be able to participate, and (iii) amenable to automatic monitoring.

The need for a formal method to describe markets in a computer-compliant
yet human-friendly way naturally arises in a variety of contexts. Most prevalent is
that of online transactions between agents, including both humans and artificial
bidding agents. An equally important context is the need for a platform for
testing new agent designs, simulating new mechanism designs, and evaluating
their properties. Our framework provides such a platform. We implement a set
of well-defined design principles and enable the specification of platforms for
describing and monitoring market mechanisms.

The scripting language we propose captures the essential semantics, namely
rights and obligations, of market mechanisms. Rights enable agents to obtain
utility by taking actions on goods that they own, while obligations allow them
to engage in safe transactions and to make credible commitments to the rules of
market mechanisms. We adopt rights and obligations as first class goods, from
which fundamental market axioms can be derived. These axioms are enforced
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within a monitoring environment that we couple with our formal scripting lan-
guage. Given a description of a market mechanism, the monitoring environment
implements the market in a prescribed way, thus giving precise semantics to the
scripting language.

Agents can interact with the monitoring environment and affect, through
their actions, the state of the virtual market. During such an interaction, agents
themselves can initiate new market mechanisms by specifying obligations on
their behavior and granting rights to participants (e.g., the right to place bids).

We take a black-box approach to the specification of agents and impose no
restrictions to their design and internal workings. As a result of this approach,
the monitoring environment is freed from complex activities such as planning
for agents and winner-determination in auctions. The monitoring environment
can instead verify whether certain goals are established by having agents state
obligations and then provide sufficient information to enable their easy verifi-
cation. For instance, an auctioneer can provide market-clearing prices to allow
the monitoring environment to check that the outcome satisfies a competitive
equilibrium, without the need for the system to compute that equilibrium itself.
Thus our approach provides a middle road between a completely formal but hard
to program system, and a completely open-ended but informal system.

The framework is introduced through a discussion of its main characteristics
and capabilities. At the end of the paper we demonstrate its flexibility through
a number of examples, including an English auction, a second-price auction, and
a combinatorial auction.

1.1 Related Work

Our approach is consistent with economic theory on property rights and orga-
nization theory. Quoting Tirole [13], “a decision right or authority granted to a
party is the right for the party to pick a decision in an allowed set of decisions.
A property right on an asset, i.e. its ownership, is a bundle of decision rights.”
It is standard to model a firm as a collection of assets and consider the ability
of a firm to retain a specific subset of its bundle of rights while selling all other
residual rights [5]. The role of obligations and commitment is recognized to be
important for efficient contracts [5], and for auction and mechanism design [6].

Prior work in multi-agent systems has considered the role of rights and oblig-
ations for the specification and semantics of open systems [1,3,4,12,15], with
approaches differing in whether the monitoring environment actively enforces
sanctions (as in our work) [1,4], or only passively maintains the global state
and informs agents of their obligations [3]. Approaches also differ as to whether
obligations are state-based (as in our work) [3], or specified in terms of actions
that an agent must perform in a particular state [1]. Some work [3,12] observes
that agents might contract other agents to satisfy the formers’ obligations, but
none of this work adopts rights and obligations as first class goods that agents
can explicitly trade and exchange. Similarly, we are unaware of any work that
explicitly sets out to model the rights that derive from goods in economic worlds
or the semantics of ownership and possession.
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Our notions of conditional, limited, and disjunctive rights are shared with
previous work on formal specification languages for financial contracts [7], al-
though that work focuses on the formal description and analysis of new forms
of financial contracts and not on providing frameworks for open agent societies.
The π-calculus has also been used for the specification of a complex model of
a Spanish fish market [10], although again the goal in that work was to assist
with the development of complex institutions rather than provide semantics for
participants or monitor and enforce properties of dynamic state.

The formal theory of deontic logic [8,9], the logic of rights and obligations, is
concerned with performing valid inference in high-level deontic logics, seeking to
establish the validity of statements such as “is every obligatory action permit-
ted?” A duality between rights and obligations provides a cornerstone of deontic
logic, with an obligation defined as an action that must be performed when no
other action can be taken, due to lack of rights. Our work differs in this aspect,
by defining rights on actions, but obligations in terms of properties on states. We
adopt soft obligations with sanctions rather than hard obligations, an approach
termed “contrary-to-duty” in the deontic logic literature [9]. In particular, our
agents can make mistakes and take actions that lead them to dead-ends in which
their obligations cannot be met.

2 Framework Overview

In this work we propose a framework comprised of a scripting language and
a monitoring environment, with the former providing the necessary syntax for
describing economic markets, and the latter providing the language semantics.
This is analogous to the case of programming languages, where a programmer
uses the language to write a program, with the semantics defined through the
program’s execution in a prescribed manner. The programmer in our framework
is the domain designer, and the program is the domain description, a collection
of laws governing the particular economic market being modeled.

As ordinary programs can import libraries that provide specific functionality,
so is the case with domain descriptions. The domain designer can import libraries
describing economic market laws that are commonplace in a variety of settings.
We have written such libraries, such as: a library on “exchanges of goods” with
laws on how goods can be traded, given, or sold between agents; a library on
“handling rights and obligations” with laws on how rights can be given up,
issued, or revoked, and how obligations can be taken on, imposed, or cleared.

A domain description is fed into the monitoring environment. The monitoring
environment then runs a virtual market world governed by the laws specified in
the domain description. The laws define the initial state of affairs of the market,
the objects that populate it, and the relevant properties of these objects, whose
values determine the state of the market over time. The laws also dictate how
agents might join or leave the market, and the available actions through which
the agents might affect and observe the market’s status. The agents are not
simulated as part of the virtual world, but they are instead acting independently
and only communicate with the monitoring environment.
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It is clear that every implementation of a given market may lead to a differ-
ent sequence of states describing the evolution of the virtual world. Each such
sequence is called a scenario and corresponds to a specific instantiation of an
economic market. The actual scenario that occurs is ultimately defined by the
actions taken by the participating agents.

2.1 Design Principles

Our framework implements a set of well-defined design principles, which we
discuss below:

Black-Box Principle: Agents are entities that exist outside our framework,
implemented in some fashion that is (possibly) independent of the proposed
scripting language. They can reason based on their own beliefs and freely
choose to take actions or not, within the market world they participate in.

Free-Will Principle: We cannot force agents to take specific actions, and in
particular, to take actions that satisfy their obligations. Instead, we impose
punitive sanctions to agents that fail to meet their obligations.

Restriction Principle: The monitoring environment is able to restrict the ex-
ecution of actions for which appropriate rights are not held by the agents.

Soundness Principle: When an action is actually executed (i.e., when the ap-
propriate right was held and the invoked action was physically executable in
the current state of the virtual world), its effects are produced in accordance
with the laws of the economic market being modeled.

The first two principles exemplify the generality of the framework we propose.
Agents are treated as black boxes, without imposing any requirements on their
internal workings other than their ability to interact with the provided interface.
We cannot force agents to act in a prescribed way. This justifies the approach of
using punitive sanctions, an approach that we follow in this work.

Our Restriction Principle is justified because the agents can only request
that actions be taken. The final decision lies with the monitoring environment,
which screens the action execution requests based on agent rights. This principle
is further supported, when viewed in conjunction with the Free-Will Principle:
An agent’s options can be limited by the monitoring environment, but the agent
still retains the choice of which (if any) option to exercise. This is the situation
faced by any agent trying to devise a plan to achieve some goal. The actions
available to the agent are restricted (albeit not by lack of rights, but rather by
lack of physical ability). The agent itself is responsible for choosing appropriate
actions that will fulfill its goal.

Finally, the Soundness Principle provides an appropriate soundness condition
for our framework. It states that the monitoring environment will always respect
the laws of the market, as defined by the domain designer.

2.2 eBay Example

In this section we demonstrate the parallels between eBay and our framework,
illustrating how our stated principles are justified by existing virtual markets.
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eBay participants freely choose to join or leave eBay’s virtual world. Partic-
ipants interact with the market by invoking actions (e.g., define upper bounds
on bids) through the provided interface, and depending on whether certain con-
ditions are met (e.g., if the bid was actually a valid numerical value) the actions
are executed and produce their effects (e.g., the input value becomes the agent’s
new upper bound for the proxy bidding). The agents then observe the new state
of affairs, and continue to invoke their next action (if any).

Notice how the Black-Box Principle applies here, with the agents being inde-
pendent of the engine (i.e., eBay’s servers) running the virtual world, and that
the only requirement they need to meet is that they can interact with eBay’s
market through the provided interface (e.g., web page links and forms). The
Free-Will Principle applies in particular, with eBay not forcing a participant to
honor a transaction, but punishing violators by means of negative feedback.1

The Restriction Principle relates to how eBay participants can auction items,
or bid on items, only when they have appropriate rights. Thus, a participant does
not have the right to place a bid lower than the current highest bid; invoking
such an action will result in the action being rejected and not executed.

Lastly, the Soundness Principle applies, for instance, in that a paying agent
is guaranteed that if the paying action is executed, then the payment will be
made, no matter what other events (e.g., the concurrent execution of some other
payment, or the fact that some auction closed one hour ago) take place.

3 Rights and Obligations

Agents pursuing goals, either by choice, or as an imposed requirement, often
have restrictions on their available options of how to meet these goals. These
options and goals correspond precisely to the notions of rights and obligations,
which play a prevalent role in our framework. We view rights and obligations
as tradable goods that can be given, taken, exchanged, sold, or auctioned. As
such, rights and obligations are treated as any first-class object with a set of
predetermined properties whose values are part of the market’s state.

We contend that viewing rights and obligations as goods is necessary for
defining natural economic market protocols, and we illustrate the strength of
such a treatment via a number of example domain descriptions later on. To
give a taste of why this idea is in fact very powerful, consider the situation of
an audio compact disk being sold in an eBay auction, with the winner being
awarded the item as per eBay’s rules. What is implicit in this transaction is
that the winner is also awarded the rights and obligations accompanying the
item, and in particular, the right to listen to the audio compact disk, and the
obligation not to infringe the copyright of the producers of the music. That is, in
1 From http://pages.ebay.com/help/confidence/programs-investigations.html:

“eBay cannot force a seller to honor their transactions. You should leave appropriate
feedback for the reluctant seller...”. The action of providing negative feedback is
taken by participants, but it is ultimately provided by eBay as a sort of a punitive
sanction.
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reality the auctioneer was not simply selling an audio compact disk, but rather a
bundle of goods that includes the item itself and certain rights and obligations.

We view rights as the options of an agent participating in a market mech-
anism, coming from property or possession of items, or otherwise given to the
agent. Rights determine the actions that an agent can take as a means of ful-
filling its own private goals, by qualifying the executability of actions. In their
full generality rights are conditional, with their provisions being applicable only
under certain conditions.

Definition 1 (Rights). We let right(#action,#condition) denote the right to
execute action #action whenever condition #condition is true.

As an example, an agent renting a car from 10:00am to 6:00pm might be
given a right of the form right(drive car, 10:00am ≤ Time ≤ 6:00pm). If the
condition is not met (and given that the agent does not have any other rights on
driving the car), then the agent cannot drive the car, virtue of the Restriction
Principle. The syntax of conditional rights is sufficiently expressive to account for
perpetual and expiring rights, and for more involved rights, such as the perpetual
right to buy bonds, but only once every year and within a limited time span.

On the other side we have obligations, which we view as constraints on an
agent’s behavior, or goals an agent should fulfill as a participant in some mar-
ket mechanism. An agent freely chooses when and how to satisfy its obligations
by appropriately exercising its rights, in the spirit of the Free-Will Principle.
Rather than enforcing (via planning) that agents meet their obligations we let
the monitoring environment detect violations and appropriately impose puni-
tive sanctions, as defined by the domain designer or the participating agents.
Sanctions might include the revocation of an agent’s rights, the loss of money
or possessions, the enforcement of additional obligations, or the banning of an
agent from participating in the market mechanism altogether.

Definition 2 (Obligations). We let obligation(#satisfy, #violate, #punish-
ment) denote the obligation of ensuring that condition #satisfy is satisfied no
later than condition #violate, under penalty of executing action #punishment.

The obligation is flagged as satisfied or violated according to which condition
is met first, and in the case of a violation the appropriate punitive sanction is
imposed through the execution of action #punishment. This general form allows
us to represent obligations of the following forms

obligation(false, balance(alice)<1000, close account(alice))
obligation(balance(alice)>1000, Time>12/31/2004, deduct account(alice, 100))

Assuming that Alice holds such obligations, then in the first case she must
ensure that her bank balance does not drop below 1000 dollars at any time,
under penalty of her bank account being closed, while in the second case she
must ensure that her bank balance goes above 1000 dollars (but not necessarily
stays there) at some time before the end of the year, under penalty of 100 dollars
being deducted from her account.
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4 Objects, States, Actions

The dynamic model of our monitoring environment is fairly standard. The world
goes through a sequence of states, with each state specifying values for the
properties of certain objects that populate the state. Each object is associated
with a class (like in object oriented programming), of which the object is an
instance, and which defines the set of properties of the object. Every object has
a unique name used by agents to reference that object. A set of basic classes are
defined by our framework, but the domain designer can extend this set.

The use of objects provides a uniform treatment for both physical goods,
like apples, and abstract goods, like rights and obligations. Money is supported
through the use of account objects, with an object property corresponding to the
account balance. Transferring money through payments is equivalent to changing
this balance in an appropriate way. The notions of ownership and possession are
also readily supported as properties of objects. Transferring an item from some
agent to another reduces to simply changing the values of these properties.

The properties and existence of these objects are only affected by means
of actions taken by the agents, through their interaction with the monitoring
environment. In their primitive form, actions have preconditions and effects.
When the monitoring environment attempts to execute an action, following its
invocation by an agent, it first checks whether the agent holds an appropriate
right, and whether the preconditions of the action are satisfied, and subsequently
updates the state according to the action’s effects. The set of effects is as follows.

Definition 3 (Effects). We let create(#object,#class), destroy(#object), and
set(#object,#property,#value) denote respectively the action effects that create
object #object as an instance of class #class, destroy object #object, and set
the property #property of object #object to the value #value.

Our framework also supports more expressive conditional and quantified ef-
fects, special instances of which are the non-deterministic, or probabilistic effects.

In their transactional form, actions are ordered sequences of actions (which
may be primitive or transactions themselves). As in databases, when executing a
transaction, either all or none of the actions are successful. The execution model
is to execute each of the actions in turn, updating the world state after each
action. If any primitive action fails to meet its preconditions, or the agent fails
to have an appropriate right at the time of each primitive action’s execution,
the entire execution is rolled back to its original state. Conceivably the first
action can grant or revoke an agent’s right to execute a subsequent action in the
transaction, allowing for a really expressive set of transactions to be modeled.

The notion of transactions is very powerful and useful, with a number of
applications, like that of implementing safe exchanges of goods. The transaction

sell(apple,1,alice) ≡ transaction([give(apple,alice),take money(1,alice)])

for instance, specifies a fail-safe way for Bob to sell his apple to Alice for one dol-
lar, without either party being vulnerable to the other’s reneging. Transactions
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can also be used in a number of other contexts, including that of implement-
ing disjunctive or expiring rights, where the agent with the disjunctive/expiring
right essentially has the right of executing a transaction comprised of the action
indented to be executed, and followed by the agent giving up the right.

A certain set of basic primitive actions and transactions are implemented
by our framework, including actions for transferring ownership or possession of
goods, transferring money, issuing or giving up rights, taking on obligations,
etc. In addition to the built-in actions, the domain designer may define actions
specific to the domain being modeled, like, for instance, the fill gas(#car) action
whose effect is that of setting the gas level property of the #car object to full.

We capture exogenous events that are outside the agents’ control by allowing
the monitoring entity to execute certain actions and attributing their execution
to an all-powerful “god” agent. Thus, for instance, the initial state of the system
is populated by means of the god agent executing the initialize action once the
domain description is loaded. Although the god agent can execute only a certain
fixed set of actions, on a well-defined set of occasions, these actions are in general
transactions, with their constituent actions being defined as part of the domain
description. This allows the domain designer to essentially specify the effects of
god’s interventions, in situations like the arrival or departure of an agent, or the
violation of some obligation, in which case the god agent executes the punitive
action associated with the violated obligation.

An important special action implemented by our framework is that of query-
ing, which serves as a way to implement private information. We treat the values
of object properties as been hidden from an agent, unless the agent has an ap-
propriate right to query an object property for its value.

Definition 4 (Query). We let query(#object,#property) denote the action of
querying the value of property #property of object #object. When the action is
executed, the agent that invoked the action learns the queried value.

For example, the property representing the collected bids in a sealed-bid
auction is only viewable by the auctioneer, thus preserving secrecy.

5 Ownership and Possession

Property rights are a basic building block of markets and our framework takes a
stand on what the rules governing these rights should look like. To start with, we
make an important distinction between ownership and possession. Ownership of
an object implies a bundle of rights, including the right to use the object and the
right to sell it. It also includes the right to sell various rights to the object. For
possession, we use the word holding, which we take to mean rightful possession.
When one holds something, one has the ability to use it through possession, and
one also has the right to use it. However, one does not have the right to sell it or
to sell any rights to it. This is a common status in the real world. For example,
when someone rents a car, he has possession of it and the right to use it (for
a limited time), but he does not have the right to sell it. We make precise the
notions of ownership and possession through the following axiomatic definitions.
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Definition 5 (Ownership Axiom). We take ownership of a good to be syn-
onymous with owning the right of setting the properties of the good to any values
physically possible. We call this the Fundamental Axiom of Ownership.

Our framework implements the Fundamental Axiom of Ownership by issuing
ownership of a right of the form

right(#action, accessible(#action, #agent))

to every agent #agent joining a virtual market, where accessible(#action,
#agent) holds exactly when action #action only affects properties of goods
owned by agent #agent. By exercising this right, the owner of an apple can sell
or give possession of the apple, since the effects of these actions are only affecting
the owned by and held by properties of the apple. Notice that in the latter case,
the owner can actually take the apple back, since he still owns the right of set-
ting the possessor of the apple. In particular, this implies that an agent owning
a right, but not holding it, can still rightfully execute an action, since the agent
can always reclaim possession of the right, execute the action, and then return
the right to its previous possessor, all within a single transaction.

Definition 6 (Possession Axiom). We take possession of a good to imply
possession of the right to use the good in a set of prescribed ways associated with
the good’s class. We call this the Fundamental Axiom of Possession.

As before, our framework implements the Fundamental Axiom of Possession
by issuing possession of a right of the following form to all participating agents

right(#action, (object(#object), value(#object,
[(held by, #agent), (uses, #uses)]), member(#action, #uses)))

where object(#object) holds exactly when object #object exists, and value
(#object, [(#property, #value),...]) holds exactly when the property #property
of object #object has value #value, for every property-value pair in the list.

Notice that the rights associated with the Fundamental Axioms of Ownership
and Possession are respectively owned and simply held by agents. Hence, in the
former case the Fundamental Axiom of Ownership applies recursively on the
associated right itself with the right being the owned object. So, an agent owning
a car, not only owns the right to drive it, but the agent also owns the right to
sell the right to drive the car, to some other agent. Selling the right to use an
object without selling the object itself is extremely common. For example, you
might sell someone the right to walk across your land without selling the land.

Rights in real life are often not given, but rather issued. When you give
someone the right to walk on your land you still retain that right for yourself,
exactly because you do not give that person your instance of the right, but rather
you issue a new copy of the right. This is achieved through the use of an issuing
action defined by our framework, and appeals to the following axiom.

Definition 7 (Rights Axiom). We take ownership of a right to imply owner-
ship of the right to issue ownership or possession of the former right (with non-
weaker conditions) to others. We call this the Fundamental Axiom of Rights.
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Other fundamental axioms are also defined in our framework, such as axioms
relating to performing transactions (e.g., giving someone the right to exchange
goods with you). All axioms are implemented by issuing suitable rights to agents.

6 Implementation Issues

Both the monitoring environment and the specification language are currently
implemented in Prolog, whose goal-oriented computation is a natural fit with
the computational tasks of our framework (e.g., checking if conditions are met).

Agents joining the monitoring environment are assigned a private channel,
through which all subsequent communication is taking place, thus associating
each exchanged message with a unique agent. Communication is taking place
asynchronously, while the monitoring environment employs a continuous treat-
ment of time, with actions occurring instantaneously.

In a typical execution, an agent is sent a Prolog list containing all the object
properties of the current state that are visible to the agent. Given the received
message, the agent reasons and chooses to invoke some action by replying with
the predicate invoke(#action). The monitoring environment records the invo-
cation event and attempts to execute the action. Success or failure of actions
is recorded and the state of the virtual world is updated and stored in a data-
base that can be later used to review the evolution of a scenario. Periodically,
the monitoring environment checks whether any obligation has been satisfied or
violated, recording the event and enforcing the appropriate punitive sanction.

Regarding the scalability of our framework, we note that we are not concerned
with the problem of planning, but rather with that of execution monitoring; the
latter remains decidable and tractable as long as the conditions of actions, rights,
and obligations are not inherently undecidable or intractable to begin with. Pre-
liminary experimental results using agents and markets we have implemented,
suggest that such issues should not arise in natural market descriptions.

7 Example Representations

In this section we represent a number of different auction markets within our
framework. The representations do not describe the agents participating in an
auction; the agents can be implemented in some arbitrary language, and their
implementation is done outside our framework. Neither do the representations
define the process by which auctions determine winners; the exact process used
is chosen and executed by the participating agents. For instance, the winner-
determination in a combinatorial auction can be performed using combinatorial
optimization, and the agent acting as the auctioneer is responsible for running
the appropriate combinatorial optimization algorithm. Rather, the representa-
tions define the rules of the auctions and capture the important properties of
winner-determination (such as the fact that the highest bids win).

We use boldface to indicate the main language operators and underlining
to indicate action names. We have also substituted certain parentheses with



198 L. Michael, D.C. Parkes, and A. Pfeffer

curly brackets to enhance readability. Other than these cosmetic enhancements
the domains are presented below in the Prolog implementation of the scripting
language of our framework. The full domain descriptions can be found online
at http://www.eecs.harvard.edu/ l̃oizos/norms.html. The object clock is
an instance of the event class, and serves as a way to hold the time at which
the current state of the world was instantiated. The various predicates used are
provided by our framework and were already described in previous sections. The
actions sell(#good,#price,#receiver) and jail(#agent) are imported from the
appropriate libraries, with the latter retracting all the rights of an agent, when
executed. The action issue p(right(#action,#condition),#agent) is the built-in
action of issuing possession of rights to agents. We assume, and do not explicitly
represent below, the fact that agents have the right to open auctions on items
they own. Also, unless otherwise stated, we assume that bidders have the right
to query all the properties of an auction and all the properties of the items being
auctioned. Such query rights are given to the bidders at the auction opening.

7.1 Open-Cry English Auction

In a typical open-cry English auction scenario an agent owning an item in-
vokes the action of opening an auction. This establishes the auction parameters,
through the create auction action not shown here. The auctioneer also gives all
bidders the right to place bids, conditioned on the new price being higher than
the current price. Finally, the auctioneer commits to closing the auction and
selling the item to the highest bidder soon after that.

action(Agent, open auction(Auction, Item, OpeningPrice)) :- transaction([

create auction(Auction, Item, OpeningPrice),

take on(obligation( { value(Auction, status, closed) } , { value(clock, happened at, Time),
value(Auction, last bid time, LastBidTime), atleast(Time, LastBidTime+100) }
, { jail(Agent) } )),

take on(obligation( { value(Auction, [ (status, closed), (highest bid, HighestBid),
(highest bidder, HighestBidder) ]), object(Event), value(Event, [ (instance of, event),
(description, invoked(Agent, sell(Item, HighestBid, HighestBidder), successfully)) ]) }
, { value(Auction, [ (status, closed), (highest bidder, HighestBidder), (closing time,
ClosingTime) ]), value(clock, happened at, Time), atleast(Time, ClosingTime+100),
HighestBidder \= Agent } , { jail(Agent) } )),

issue p(right( { place bid(Auction, Bid) } , { value(Auction, [ (highest bid, HighestBid),
(status, open) ]), atleast(Bid, HighestBid+1) } ), Bidder) ]).

Bidders proceed to place bids by raising the current highest bid. This grants the
auctioneer the right to sell them the item at that price.

action(Agent, place bid(Auction, Bid)) :- transaction([ raise bid(Auction, Bid),

issue p(right( { sell(Item, Bid, Agent) } , { value(Auction, [ (status, closed), (highest bid,
Bid), (highest bidder, Agent) ]), value(clock, happened at, Time),
atleast(ClosingTime+100, Time) } ), Auctioneer) where value(Auction, [ (auctioneer,
Auctioneer), (item, Item) ]) ]).
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action(Agent, raise bid(Auction, Bid)) :- preconditions([ object(Auction),
value(Auction, highest bid, CurrentBid), atleast(Bid, CurrentBid+1) ]), effects([
set(Auction, highest bid, Bid), set(Auction, highest bidder, Agent), set(Auction,
last bid time, Time) where value(clock, happened at, Time) ]).

At the end, the auctioneer closes the auction and continues to invoke the sell
action, as obligated by the rules of the auction.

7.2 Sealed-Bid Second-Price Auction

In a typical sealed-bid second-price auction scenario an agent opens an auction
in the same manner as in the open-cry English auction. The main difference is
that when the auctioneer grants to the bidders the right to query the properties
of the auction, the granted right is conditional on the queried property not being
the set of bids property, preserving in this way the secrecy of the collected bids.

action(Agent, open auction(Auction, Item, OpeningPrice)) :- transaction([

create auction(Auction, Item, OpeningPrice),

take on(obligation( { value(Auction, [ (status, closed), (set of bids, SetOfBids), (winner,
HighestBidder), (payment, SecondHighestBid) ]), get second price(SetOfBids,
SecondHighestBid), get first bidder(SetOfBids, HighestBidder) } , { value(clock,
happened at, Time), value(Auction, last bid time, LastBidTime), atleast(Time,
LastBidTime+100) } , { jail(Agent) } )),

take on(obligation( { value(Auction, [ (status, closed), (winner, HighestBidder), (payment,
SecondHighestBid) ]), object(Event), value(Event, [ (instance of, event), (description,
invoked(Agent, sell(Item, SecondHighestBid, HighestBidder), successfully)) ]) }
, { value(Auction, [ (status, closed), (winner, HighestBidder), ]), value(clock, happened at,
Time), atleast(Time, ClosingTime+100), HighestBidder \= Agent } , { jail(Agent) } )),

issue p(right( { query(Auction, QueriedProperty) } , { value(Auction, status, open),
QueriedProperty \= set of bids } ), Bidder),

issue p(right( { place bid(Auction, Bid) } , { value(Auction, status, open) } ), Bidder) ]).

action(Agent, create auction(Auction, Item, OpeningPrice)) :- preconditions([ \+
object(Auction) ]), effects([ create(Auction, sealed auction), set(Auction, owned by,
Agent), set(Auction, held by, Agent), set(Auction, auctioneer, Agent), set(Auction, status,
open), set(Auction, item, Item), set(Auction, set of bids, [(Agent,OpeningPrice)]),
set(Auction, winner, undefined), set(Auction, payment, undefined), set(Auction,
last bid time, Time) where value(clock, happened at, Time), set(Auction, closing time,
undefined) ]).

Bidders proceed to submit sealed bids, by updating the set of bids property, but
without ever seeing its actual contents. Each bidder can only place one bid.

action(Agent, place bid(Auction, Bid)) :- transaction([ submit bid(Auction, Bid),

issue p(right( { sell(Item, Bid, Agent) } , { value(Auction, [ (status, closed), (payment,
Bid), (winner, Agent) ]), value(clock, happened at, Time), atleast(ClosingTime+100, Time)
} ), Auctioneer) where value(Auction, [ (auctioneer, Auctioneer), (item, Item) ]) ]).
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action(Agent, submit bid(Auction, Bid)) :- preconditions([ object(Auction),
value(Auction, set of bids, SetOfBids), \+ member((Agent,AnyBid), SetOfBids) ]),
effects([ set(Auction, set of bids, [(Agent,Bid)|SetOfBids]) where value(Auction,
set of bids, SetOfBids), set(Auction, last bid time, Time) where value(clock,
happened at, Time) ]).

Finally, the auctioneer closes the auction by declaring a winner and a payment
and continues to invoke the appropriate sell action.

7.3 Combinatorial Auction

The case of a combinatorial auction resembles the sealed-bid auction, and thus
we only briefly discuss the main points of difference. In a Vickrey-Clarke-Groves
(VCG) auction (see Jackson [6]), as the one represented below, the auctioneer
opens the auction for a set of items, invoking (amongst other things) the following
action for committing to an efficient outcome and VCG payments:

take on(obligation( { value(Auction, [ (status, closed), (set of bids, SetOfBids), (allocation,
Allocation), (prices, Prices), (payments, Payments), (marginal allocations,
AllocationPerMarginalMarket), (marginal prices, PricesPerMarginalMarket) ]),
AllAllocations = [Allocation|AllocationPerMarginalMarket], AllPrices =
[Prices|PricesPerMarginalMarket], checkOutcomeEfficiency(SetOfBids, AllAllocations,
AllPrices), checkVCGPayments(SetOfBids, AllAllocations, Payments) } , { value(clock,
happened at, Time), value(Auction, last bid time, LastBidTime), atleast(Time,
LastBidTime+100) } , { jail(Agent) } )),

Bids are then placed, each specifying a bundle of items. Each bidder can sub-
mit multiple bids (issuing the corresponding rights). Given the semantics of an
“additive-or” bidding language, any number of bids can then be accepted. On
closing the auction, the auctioneer determines the revenue-maximizing allocation
and the VCG payments. The auctioneer also provides the revenue-maximizing
allocations in each marginal economy (with each bidder removed in turn), and
competitive equilibrium (CE) prices in the main and marginal economies [2]. The
CE prices allow the monitoring environment to verify that the allocations are
optimal by checking best-response conditions for the seller and for each bidder.
These checks are taken care of by a call to the checkOutcomeEfficiency predi-
cate. Once the main and marginal allocations are checked, the VCG payments
are checked with a call to the checkVCGPayments predicate. Both predicates
are implemented in Prolog and are part of the actual domain description.

8 Conclusions

We argue that rights and obligations, important in human economies and often
enforced through legal remedies, will be important in agent-mediated economies.
We have defined a formal language that allows the specification of market mech-
anisms and a monitoring environment that allows for the automatic checking of
rights and the enforcement of sanctions based on failed obligations. Simulations,
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frequently in the form of competitions such as the Trading Agent Competition
[11,14], have often been used to explore market space and drive research into
agent-based reasoning within electronic markets. We hope that the formal ap-
proach taken here, in which the semantics of markets are exposed to agents,
will also prove useful in the development of principled methods in agent-based
reasoning within electronic markets. We feel that the design principles imple-
mented by our framework capture the main underlying assumptions of many
virtual market designs and implementations (like eBay), and thus provide an
infrastructure for the specifications of future virtual markets, and simulation
platforms for testing agent designs.
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Abstract. This paper presents iAuctionMaker as a novel tool that serves as a 
decision support for e-sourcing professionals on their pursuing of auction  
optimisation. Given a set of items to auction, iAuctionMaker helps an auction-
eer determine how to separate items into promising bundles that are likely to 
produce better outcomes than the bundle of items as a whole. Promising  
bundles are those that satisfy certain properties believed to be present in com-
petitive sourcing scenarios. These properties are defined by e-sourcing profes-
sionals and capture their experience and knowledge in the domain. iAuction-
Maker models this knowledge as constraints to be satisfied by any bundle, and 
implements an optimisation algorithm to find the bundles that maximize satis-
faction. Experimental results are shown to demonstrate the applicability of the 
approach. Case studies are presented to demonstrate that iAuctionMaker im-
proves current e-sourcing practices and provides an alternative to combinatorial 
scenarios whose complexity hinders their application in actual-world sourcing 
scenarios. 

1   Introduction 

The negotiation scenario considered in this paper starts out with a buyer requiring to 
acquiring a set of items (be them either products or services). The buyer will negotiate 
the price and conditions1 of each item by means of one or more on-line reverse auc-
tions [16]. A set of providers will be invited to bid under certain auction rules that 
include bidding and winning rules. The auction is expected to allocate to some (all) of 
these providers some (all) of the items at auction.    

A common industrial scenario involves multiple goods or services to be purchased 
as a whole with the intention of benefiting from volume-based discounts. One may 
think, for example, of demand aggregation from different companies. The winner gets 
huge business and the losers get nothing, a simple and well-known strategy for lower-
ing the price.   
                                                           
1 Notice that we consider multi-unit, multi-attribute items.  
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Unfortunately, things are not so simple. Maybe there is just one single provider 
that can provide everything so, if auctioning a single bundle, he will not face difficul-
ties in getting the business at the price he quotes. Maybe it is not acceptable that (as 
providers bid for the whole thing), they lower the price for company-A product at the 
expense of increasing the price for company-B product (and consequently deal with B 
complaining about why are they buying more expensive than last year). 

Therefore, the question is: should a seller who wants to maximise his revenue con-
duct separate auctions, one for each of several objects, or should he conduct a single 
auction for the entire bundle, or should he group items into bundles and conduct sev-
eral auctions? 

Efforts and tools have been developed to answer this problem. The general proce-
dure is to allow flexibility in bidding by allowing providers to bid over combinations 
of items according to their preferences. I.e., give providers a way to state that they 
will offer a better price if there is a guarantee that they will get a certain amount of the 
business. This mechanism is known as combinatorial bidding [10] and has been 
widely studied in literature as an optimum artifact to maximize results.  

To achieve coherent and practical results from a reverse combinatorial auction it is 
a must to introduce constraints that sacrifices mathematical optimality of the winning 
set in favour of obtaining realizable and practical outcomes [8][10][17]; (it is unnatu-
ral to have 40 different winners, for example, so it will be convenient to limit the 
amount of winners and state a lower bound of the amount of business they can get). 

Unfortunately, combinatorial bidding capabilities are rarely found on commercial 
systems2 [4] [15], and yet there is a major problem that prevents the practical applica-
tion of combinatorial auctions: complexity. Bidding in a combinatorial auction re-
quires accurate knowledge and understanding of the auction’s dynamics in order to 
decide what is the next bid to place [14], [18]. Moreover, the constraints imposed to 
determine winners make winning rules complex to follow.  

The conclusion is that the practical application of the above methods is usually 
constrained to very controlled and specific environments (e.g. [5]). 

To overcome this situation, e-sourcing professionals usually follow an alternate 
approach: based on market real data and knowledge, the whole bundle is divided into 
separate auctions where the appropriate providers are invited and where certain prop-
erties are satisfied. These properties model the expertise of e-sourcing specialists in 
the form of rules of thumb, and their applicability they believe can turn into interest-
ing benefits [6]. 

Each auction is a simple reverse auction supported by the majority of existing 
commercial on-line auction platforms, and their execution present none of the com-
plexities previously discussed. And the outcome of each auction is highly promising, 
as they have been designed to verify some criteria known to maximise savings. 

It is interesting to state that theoretically, this methodology is expected to produce 
not as good results as a full combinatorial auction as it is likely that hidden synergies or 
interesting market situations are left out and unexploited. In spite of that, we believe 
that the former assert is true if and only we assume the ideal situation where everybody 
knows and controls the combinatorial auction mechanisms. Such a supposition is, for 

                                                           
2 To develop a commercial system that allows fully flexible wining rule configuration to cope 

with real situations is costly, despite interesting results are being obtained. 
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the best of our experience, never satisfied in practice and, consequently, not only it 
cannot lead to the desired result, but even produce catastrophic outcomes.  

Nevertheless, in this methodology, the core process that is responsible for the  
success of the e-sourcing event is obviously the process of determining the grouping 
of items into bundles to be auctioned. Expertise and market knowledge are key  
factors, but in many situations the number of lines (100s or more) and the number of 
providers (20s or more) makes the problem intractable. These difficulties make desir-
able to count on a tool to aid e-sourcing professionals at this stage. We have called 
this tool iAuctionMaker. 

iAuctionMaker is a decision support tool that assists an auctioneer in defining the 
ideal bundles by declaring a list of pre-existing constraints that can be tuned and pri-
oritised according to his preferences. iAuctionMaker solves the problem of finding 
the bundles that maximizes the satisfaction of these constraints.  

Although the bundling problem has been previously addressed in the literature we 
observed that it has mostly focused on the issue of whether a seller ought to sell items 
separately or as a bundle and to determine the price of the bundle(s) to be sold. In 
general, the bundling literature has evolved from early works considering a single 
seller bundling two goods [1] to works considering the analysis of a monopolist bun-
dling multiple goods [3], to more recent works spurred by the advent of the Internet 
that contemplate competition of multiple sellers [2] [12]. As to multi-seller markets, 
in [12] the authors propose and analyse a bundling model to set both price and bundle 
composition in which a seller is not considered in isolation but in a market scenario 
wherein additional sellers compete to offer their bundles.     

iAuctionMaker takes a different stance. We depart from a market scenario in which 
a single buyer aims at acquiring a bundle of multi-attribute goods. Unlike traditional 
approaches, it is not our aim to decide whether the buyer ought to purchase the goods 
separately or as a bundle, along with an appropriate pricing strategy. Our goal is to 
produce a bundle composition for a buyer that leads to clusters of providers (bidders) 
exhibiting high degrees of competitiveness, while at the same time satisfying the 
buyer's preferences (modelled as a collection of constraints). Furthermore, we expect 
that the partitioning of the whole bundle of items also benefits bidders since they are 
expected to address the bid construction problem [14] [18] for smaller bundles (less 
goods and competitors). 

2   Problem Definition 

The formal formulation of the problem is the following:  

• I = {I1, I2, ... In} is a finite set of n items representing the goods or services to be 
purchased.  

• P = {P1, P2, ... Pm} is a finite set of m providers.  
• A = {A1, A2 , … Ao} where each element of A is a function  A:2I  R  that models 

a property or observation of a subset of I representing a bundle. These properties 
might be various (number of providers, number of lines, bundle volume, etc.) and 
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come from different sources (previous provider behaviour, a preliminary RFQ3, 
provider and item characterization, etc, etc.)  

• C = {c1, c2, …, cr}. Each ci∈ C is a soft-constraint defined as a tuple <Ai, Si, wi
 > 

with the following meaning: Ai is the bundle property to be evaluated,  
Sc: R [0…1] is a scoring function (formally defined in section 3) that expresses 
the satisfaction degree for Ai (0 indicates no satisfaction at all; and 1 indicates 
maximum satisfaction); and w ∈ R+ expresses the relative weight of the  
constraint. 

 
The objective is to find L={L1, L2, …Lq} a set partition of I that maximises the fol-

lowing expression:  

 

 
 

 

 Sc(Ac(Lk)) · wc

wc

| L |
S(L) =  

Lk∈L 

c∈ C

c∈ C

 

(1) 

subject to: (1) Li ∩  Lj = ∅    ∀ Li , Lj ∈ L; Li ≠ Lj ; and (2) L1 ∪ L2 ∪ …Ll = L. 
 

This problem is a particular instance of the set partition problem [13], which is 
known to be NP complete [7]. 

3   Solution 

To solve the problem formulated in the previous section, we first have to define a 
bundle’s utility theory (i.e, define Sc and design an optimisation algorithm. 

3.1   MAUT-Based Bundle Evaluation 

The method used in iAuctionMaker for scoring a bundle is based on Multi attribute 
utility theory [11], since bundle’s utility or goodness can be evaluated by the degree 
of satisfaction of a list of attributes for a given user’s preference and importance.  

To model preferences and importance we have previously defined a set of con-
straints. Each constraint ci = <Ai, Si, wi

 > evaluates some property Ai of a bundle by 
means of a scoring function Si. To define Si, we have followed the guidelines proposed 
in [15] where membership functions are studied to intuitively model human prefer-
ences. With these considerations in mind, Sc: R [0…1] is defined as follows:  

 
 Sc(p) = α+(b-p)·β        p∈ [a, b] 
 Sc(p) = max {Sc(a)-(a-p)·δ , 0)  p<a 
 Sc(p) = max {Sc(b)-(p-b)·φ, 0)  p>b 

(2) 

 

where: (i) a,b (a<b) define the preferred range [a…b] of values; (ii) sl ∈ 
{ANY,LIB,MIB,LIBC,MIBC} defines the preference slope of Sc; (iii) mh ∈{YES, NO}. if  
mh= YES  then values are not   accepted out of the preference interval (they will score 
0); and (iv) α, β, δ, φ, depend on the value of sl and mh and are calculated as shown in 
table 1. 
                                                           
3 Request For Quotation. 
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Table 1. Values of α, β, δ, φ, as a function of mh and sl 

mh \ sl ANY LIB MIB LIBC MIBC 
No α = 1 

β = 0 
δ = γ··(1-η) 
        (b-a) 

φ =δ 

α = η 
β = (1-η) 
       (b-a) 

δ = 0 
φ = γ··β 

α = 1 
β = - (1-η) 
          (b-a) 

δ = γ··β 
φ = 0 

α = η 
β = (1-η) 
       (b-a) 
δ = -γ··β 
φ = -γ··β 

α = 1 
β = - (1-η) 
         (b-a) 

δ = γ··β 
φ = γ··β 

Yes α = 1 
β = 0 

δ = + ∝ 
φ =+ ∝ 

α = η 
β = (1-η) 
       (b-a) 

δ = 0 
φ = + ∝ 

α = 1 
β = - (1-η) 
         (b-a) 

δ = + ∝ 
φ = 0 

α = η 
β = (1-η) 
       (b-a) 
δ = + ∝ 
φ = + ∝ 

α = 1 
β = - (1-η) 
         (b-a) 

δ = + ∝ 
φ = + ∝ 

Intuitively, when a value falls within the preference limits, is given a value that is 
at least η, which models the limit of satisfaction. Depending on the slope sl the scor-
ing progress from η to 1 as we move through [a...b]. When a value falls outside the 
preference limits, it receives a score that will be progress from η or 1 to 0 depending 
on how ‘close enough’ is the value to the preferred side. By ‘close enough’ we con-
sider values within a neighbourhood of the interval (computed as a percentage 1/γ of 
the interval length). Figure 1 shows the scoring for a=10, b= 20, mh=NO, η = 0.3,  
γ = 2. 
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Fig. 1. Scoring functions 

• ANY is used when we just want that a property p of the bundle to fall between 
[a…b]. 

• LIB states that we will consider the constraint satisfied if p≤ b, and that we will 
consider full satisfaction when p≤ a. 

• MIB states that we will consider the constraint satisfied if p ≥ a, and that we will 
consider full satisfaction when p≥ b. 

• LIBC means that a constraint is satisfied if p∈[a…b]; full satisfaction will be 
considered when p=a; and minimum satisfaction when p=b.  
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So far we have explained how to obtain the degree of constraint satisfaction for a 
bundle by means of a scoring function. For a set of constraints, scoring functions are 
then weighted to obtain the overall bundle scoring as shown: 

 

 
 

 Sc(Ac(Lk)) · wc 

wcc∈ C

c∈ C

 

(3) 

By setting each wc accordingly, the user is allowed to state satisfaction preference 
among constraints. 

3.2   Optimisation Algorithm 

The optimisation algorithm implemented for iAuctionMaker falls in the category of 
random probabilistic methods. Well-known exponents of these are genetics algo-
rithms and neighbourhood search [9]. The main idea within these methods is to start 
by a number of initial solutions and implement a try and test procedure to discover 
better solutions. The try and test procedure, or search, is basically an iterative random 
change of these solutions until the best exponent converge to a local optima or a 
maximum number of try-and-test cycles are done. The search is directed by favouring 
changes that follow certain heuristics. 

We have devised our own probabilistic search procedure which is mainly a 
neighbourhood search directed by heuristics. Whether it is a new procedure,  
extension, optimisation, or rediscovering of existing search algorithms is, at the 
current stage of the work, of no importance to us and is beyond the scope and  
interest of this paper. Literature is full of claimed-as-new algorithms that are actu-
ally rediscovers of existing algorithms previously applied to different problem  
domains.  

The reason why we have applied such an algorithm is because random search 
methods are usually fast, perform relatively well and are easy to implement. Also, 
random search methods are usually independent from the objective function, and 
their performance do not heavily rely on exploiting problem characteristics and 
lower bounds identification. This is of special interest to us, as we expect the num-
ber and type of the constraints to be highly determined by the final user and his 
application domain (e.g. food, transportation, indirect materials, etc.). Even if we 
are able to model the problem as an integer program, the introduction of new  
constraints will force us to study the feasibility of the current model and to change 
it accordingly. Employing a branch-and-bound procedure would require a consider-
able amount of expert knowledge and effort to tune the heuristics function each 
time new constraints are changed or refined, in order to maintain algorithm  
performance. 

The main criticism to approximate random search is sub-optimality. In our case, 
we believe this is not critical as the solution is just an intermediate phase in our proc-
ess that will terminate with the execution of an auction, the real outcome of which is 
unpredictable. The algorithm can be outlined as follows: 

 



208 A. Reyes-Moro and J.A. Rodríguez-Aguilar 

 

L = ∅ 
for each Ii ∈ I 
    create Li = {Ii} 
solution = copy_of(L) 
while (convergence is not reached)  
  randomly pick Li ∈ L; with probability  
  inversely proportional to S({Lj}) 
  randomly pick Lj ∈ L ∪ {∅} ; Lj ≠ Li with uniform  
  probability 
  randomly pick Ik ∈ Li with probability  
  inversely proportional to S({Li}) – S({Li – Ik}) 
  Li = Li – Ik 
  Lj = Lj ∪ Ik 
  if Li = ∅ then L = L - Li 
  if Lj ∉ L then L = L ∪ Lj 
  if S(solution)<S(L) then 

  solution = copy_of(L) 
return solution  

   

The previous procedure is explained as follows:  An initial solution is built by con-
sidering each item to be auctioned in isolation. Then we enter an iterative phase where 
we randomly select a bundle. The bundle is selected implementing a roulette wheel 
[9] where the chances of each bundle are inversely proportional to its constraints 
satisfaction value (i.e. bad bundles will be selected more often, in an attempt to trans-
form them into good ones) From this bundle, we select the item that is most probably 
causing the low satisfaction value of the bundle. To identify bad items we calculate 
the difference between the constraint satisfaction degree of the bundle with and with-
out the item. Once an item has been selected, we remove it from the bundle, and next 
we randomly select a bundle (or a new bundle) where to add the item. The heuristic 
beneath this procedure is to penalise bad combinations of items. The random nature of 
the neighbourhood search prevents excessive falling into local optima.  

The basic procedure has been enhanced with typical techniques to allow the algo-
rithm to converge faster:  

• Implement a backtracking procedure that allow to backtrack to a previous state if 
the current solution differs more than  certain percentage from the best solution 
known so far. 

• Avoid useless operations (i.e., changes that are known not to lead to better solu-
tions). 

• Implement an alternate change operator that joins two bundles. A probabilistic 
factor is used to randomly determine which operator to apply at each step of the 
algorithm. 

3.3   Implementation 

The core of iAuctionMaker is implemented in java and verifies the XML and J2EE 
standards, which simplify the implementation of multiple user interfaces (web-based, 
for example) as well as its integration with existing applications. The object model of 
iAuctionMaker works with interface declarations of constraints and properties  
objects. This allows the easy extension of the system by implementations of client-
custom constraints. As mentioned in the previous section, the random search proce-
dure implemented will not need of reformulation if new constraints are added. This 
will optimise product customisation, without incurring in costly AI expertise and 
algorithm-refactoring. 
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4   Results 

This section will present two experimental outcomes of iAuctionMaker. The first results 
aims to demonstrate that the search procedure developed for the tool performs  
satisfactorily. The second results present the commercial application of iAuctionMaker  
to two real sourcing scenarios. 

In order to validate the optimisation algorithm proposed we performed two ex-
perimental tests. The first one aims at measuring the optimality of the algorithm when 
compared to a complete search procedure. The second experiment aims at measuring 
the correctness and applicability of the algorithm for large instances of the problem. 

For the first experiment we generated 1000 random instances of a problem consist-
ing of 11 lines and 11 providers4. The problem instance considers that all providers 
are capable of providing all lines. The price provider j offers for line j is randomly 
determined with uniform probability between [0..10]. We considered four constraints: 
volume aggregation, best bidder presence, bids’ variability and number of providers. 

Each problem is solved optimally by a brute force search procedure5, i.e., all possi-
ble solutions are generated. Then, each problem is solved with our algorithm and 
results are compared. 7 rounds are executed, each varying the algorithm termination 
condition, which controls the number of iterations (different solutions) explored by 
our algorithm, for each round. Table 2 shows the results obtained. 

Results suggest that iAuctionMaker seems to perform accordingly with the objec-
tives, i.e., optimal solutions are found with considerable less search effort and, maybe 
more important, the relative difference between the optimal and the sub-optimal solu-
tion found is more than acceptable.  

Table 2. Results obtained for experiment 1 

% of search effort % of problems solved 
optimally 

% variation between optimal 
and best solution found 

0.2 23 4.11 
1.05 56 2.87 
1.93 69 2.3 
8.36 85 1.63 
16.22 89 1.4 

77 93 1.53 
150 96 1.36 

 

The second experiment consisted in solving problems for which we know the best 
solution in advance. Problems are generated by randomly separating items into 2, 4, 5, 
10, or 20 bundles. Each bundle is only provided by a certain group of providers. Two 
constraints were considered, number of providers, and bundle volume. Hence, the best 
possible solution is to find such bundles. The problem size was fixed to 100 lines and 
20 providers, which is a problem size larger than the ones to be solved in our case 
studies. Table 3 shows the optimality evolution as we increase the search effort. 

Results suggest that the performance indicators observed for experiment 1 can also 
be obtained for large instances of problems and at affordable cost. 
                                                           
4 An affordable size to be solved by a brute force search algorithm. 
5 The total number of different solutions for this problem size is 678570 (see Bell Numbers for 

further information).  
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Table 3. Results obtained for experiment 2 

% of problems 
solved optimally 

Average 
mean solution 
time (seconds) 

17% 0.16 
54% 0.49 
70% 0.9 
87% 3.7 
89% 6.8 
98% 26.8 
99% 65.9 

 

In conclusion, these experiments suggest that we can be fairy confident on the good-
ness of iAuctionMaker random optimisation procedure to be applied in real scenarios. 

4.1   Case Study: Electricity Purchase 

The first scenario studied the initials offers received from 5 South-Europe electricity 
companies to power a total of 20 manufacturing facilities in Spain that belong to the 
same company. The plants are all of similar power consumption and are geographi-
cally distributed across the country. For each location, bidders decide whether to bid 
or not. The bid presented stands for the average price of the Kilowatt, according to 
last year consumption records. The scenario is therefore translated into a problem 
consisting of 20 lines and 5 providers. Table 4 presents the initial offer given by each 
provider for each location6. 

Table 4. Electricity market data 

Locations/Providers P1 P2 P3 P4 P5 
BAD 5,545 5,836 5,415 5,493 5,329 
BEZ 5,313 5,528 5,384 5,269 5,028 
CAR 5,599 5,896 5,339 5,604 5,311 
COD 5,495 5,91 5,247 5,489 5,195 
COR 4,417 4,831 4,484 4,444  
DULC 5,883 6,296 5,761 5,978  
ESP 5,496 5,881 5,431 5,483 5,361 
GEN 5,129 5,402 4,886 5,211 4,903 
GRA 5,317 5,739 5,24 5,264 5,13 
GUA 5,366 5,119  5,347 5,141 
PER 5,219 5,583 5,112 5,265 5,151 
PLANT 5,494 5,988 5,606 5,381 5,261 
RAI 5,724 6,353 5,727 5,743 5,561 
RIB 5,795 6,021 5,575 6,033 5,423 
RON 5,803 6,204 5,774 5,869 5,498 
SES 5,31 5,831 5,422 5,289 5,134 
SEV 5,182  5,083 5,238 5,101 
VOÑÑ 5,345 5,745 5,452 5,212 5,146 
ZAM 5,312 5,634 5,067 5,439 5,093 
FRI 5,258 5,428 5,005 5,209 5,035 

                                                           
6  Bidders are first invited to an RFQ where to place their first offer. (They do not know yet that 

an auction may later take place). 
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The company’s sourcing professionals know that in order to achieve savings, it 
will be of interest to group facilities rather than auction each facility in isolation. 
However, some of the bidders are new, small companies (the Spanish electricity mar-
ket was liberalized short ago) which are geographically specialized and are likely to 
bid aggressively for facilities in their area, whereas unable to compete for others.   

To model this knowledge into iAuctionMaker three constraints were given: 

1. The bigger the bundle (in price terms7), the better. 
2. The best possible offer for the whole bundle8 by a single provider must be at 

most 1% worse than the offer obtained by selecting the best offer per loca-
tion. 

3. Ideally there should be 3 providers whose offers for the whole bundle differ 
less than 3%. 

Constraint 1 tried to make bigger bundles, where there exists place for competi-
tiveness (constraint 3). To prevent missing very competitive offers for certain loca-
tions, constraint 2 is given.  

Table 5. Modelling constraints 

Constraint A (Observable variable) Sc
9 wc 

c1 Total bundle price, calculated as the sum of the 
mean offer for each line. 

a = 20 
b = 100 

1 

c2 Number of providers that are %1 from the optimal. A = 1 
b = 1 

1 

C3 Number of providers capable of offer the whole 
bundle. 

a = 2 
b = 3 

1 

 
With these constraints, iAuctionMaker finds the 3-bundle distribution shown in 

Figure 210.  
All three bundles are quite similar and satisfy the desired properties: 

• There are 3 providers close enough to compete. 
• The amount of business is interesting. 

In case of no auction activity, the risk is to purchase %0.47 more expensive than 
the current situation. 

4.2   Case Study: Transportation Purchase 

The second scenario studied the initials offers received from 16 transportation com-
panies to deliver a company range of products to 81 destinations across Europe. A 
first round of RFQs where conducted to obtain initial price-matrix (destination by kg). 

                                                           
7   All prices are in EURO. 
8  We induce the value of the offer for the bundling as the addition of the known offers for the 

individual locations.  
9  The rest of parameters are set as follows sl=MIB, mh=NO, η = 0.3, γ = 2. Refer to table 1. 
10  This solution depicted is just one among others that scored identically.  The company pur-

chasing department evaluated them all and the final auction configuration (not shown here) 
was selected considering geographical distribution.  
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Based on historical data, the price matrix was reduced to a single column representing 
the total cost to each destination for each bidder.  

The application of iAuctionMaker to this scenario produced an interested outcome: 
it was not possible to find any promising bundle to undergo an auction. 

To obtain an explanation for this, iAuctionMaker was given the following two  
constraints: 

• The bigger the bundle, the better. 
• The best bidder for the bundle must be also the best bidder for each single 

destination in the bundle. 

In other words, with these two constrains iAuctionMaker was configure to identify 
the current winning set of providers and group destinations accordingly.  

 

Fig. 2. iAuctionMaker results for the electricity problem 

As seen in figure3, the solution obtained has 3 bundles, each corresponding to 3 
winners: P9, P13 and P4. Notice the difference in price between the winner and the 
immediate competitor (a minimum of 43% for Bundle 3). This explains why there is 
no room for an auction. Obviously, the bundles obtained correspond to a particular 
geographical distribution for which each winner is clearly specialised (Bundle 1 only 
contains locations in Italy, for example). 

After obtaining these results, the company purchasing department verified that 
there was no mistake in the offers received and the negotiation ended after a second 
round of offers. 

Conclusively, iAuctionMaker proved to be useful in assisting the user to identify 
scenarios where the application of an on-line auction will not produce clear benefits. 
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Fig. 3. iAuctionMaker results for the transportation problem 

5   Conclusions 

This paper has presented iAuctionMaker as a novel decision support tool for e-
sourcing professionals. The motivation was to improve current e-sourcing procedures 
and provide an alternative to combinatorial or constraint bidding whose complexity 
prevents their application in real sourcing scenarios. The methods and algorithms 
developed were highly directed by software industry needs of efficiency and easy of 
extension and customisation. Experimental results showed promising results, which 
were later verified by successful application to real industry problems. Customers 
highly evaluated the tool and were satisfied with the results obtained.  

Future work basically lays in the application of the tool to more real sourcing sce-
narios from various industries. This will provide us with useful feedback from e-
sourcing professionals as well as to test new constraints obtained from their domains. 
Our goal is to provide an extensive library of rules of thumb that contains the expert 
knowledge of sourcing professionals. 
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